Throughput enhancement for cognitive radio networks with energy harvesting and non orthogonal multiple access

被引:0
|
作者
Raed Alhamad
机构
[1] Saudi Electronic University,Information Technology Department
来源
Telecommunication Systems | 2022年 / 79卷
关键词
Optimal harvesting and sensing durations; NOMA; Optimal power allocation; Nakagami channel;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, users’ powers, harvesting, and sensing durations are optimized for interweave cognitive radio networks using Non-Orthogonal Multiple Access (NOMA). In the first slot, the secondary source harvests energy using the received signal from node H during βT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta T$$\end{document} seconds where 0<β<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\beta <1$$\end{document} is the harvesting duration percentage and T is frame duration. In the second slot, the secondary source senses the channel during (1-β)νT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1-\beta )\nu T$$\end{document} seconds to detect primary source activity using the energy detector. When the primary node is idle, the secondary source transmits data to N NOMA secondary users during (1-β)(1-ν)T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1-\beta )(1-\nu ) T$$\end{document} seconds. Users’ powers, harvesting β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} and sensing durations ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu $$\end{document} were not yet optimized for interweave cognitive radio networks using NOMA to maximize the throughput. We derive the outage probability at each user in order to compute and optimize the throughput using the alternating maximization algorithm. Two strategies are considered for users’ ranking based on the instantaneous or the average power of channel gains. Optimal harvesting and sensing durations with optimal power allocation offer up to 7.8 dB gain with respect to using the same durations for energy harvesting and spectrum sensing. Joint optimization of harvesting and sensing durations offers up to 5 dB gain with respect to optimizing either the sensing or the harvesting durations as proposed in the literature.
引用
收藏
页码:503 / 514
页数:11
相关论文
共 50 条
  • [21] Energy Efficiency Optimization in Cognitive Radio Inspired Non-Orthogonal Multiple Access
    Zhang, Yi
    Yang, Qian
    Zheng, Tong-Xing
    Wang, Hui-Ming
    Ju, Ying
    Meng, Yue
    2016 IEEE 27TH ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR, AND MOBILE RADIO COMMUNICATIONS (PIMRC), 2016, : 612 - 617
  • [22] Optimal Spectrum Access for Energy Harvesting Cognitive Radio Networks
    Park, Sungsoo
    Hong, Daesik
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2013, 12 (12) : 6166 - 6179
  • [23] Cooperative Non-Orthogonal Multiple Access in Cognitive Radio
    Lv, Lu
    Chen, Jian
    Ni, Qiang
    IEEE COMMUNICATIONS LETTERS, 2016, 20 (10) : 2059 - 2062
  • [24] Energy Outage and Achievable Throughput in RF Energy Harvesting Cognitive Radio Networks
    Wu, Shanai
    Shin, Yoan
    Kim, Jin Young
    Kim, Dong In
    2016 IEEE 27TH ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR, AND MOBILE RADIO COMMUNICATIONS (PIMRC), 2016, : 2180 - 2185
  • [25] Throughput of a cooperative energy harvesting secondary user in cognitive radio networks
    El Shafie, Ahmed
    Khattab, Tamer
    TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES, 2016, 27 (10): : 1365 - 1379
  • [26] Throughput Maximization for Underlay Cognitive Radio Networks with RF Energy Harvesting
    Xiao, He
    Jiang, Hong
    He, Xiao-li
    14TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, NETWORKING AND MOBILE COMPUTING (WICOM 2018), 2018, 306 : 277 - 284
  • [27] Total Throughput Maximization of Cooperative Cognitive Radio Networks With Energy Harvesting
    Zheng, Kechen
    Liu, Xiaoying
    Zhu, Yihua
    Chi, Kaikai
    Liu, Kangqi
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2020, 19 (01) : 533 - 546
  • [28] Throughput maximization in electromagnetic energy harvesting cognitive radio sensor networks
    Ergul, Ozgur
    Alagoz, Fatih
    Akan, Ozgur B.
    INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, 2016, 29 (07) : 1305 - 1322
  • [29] Price-based time and energy allocation in cognitive radio multiple access networks with energy harvesting
    Ding Xu
    Qun Li
    Science China Information Sciences, 2017, 60
  • [30] Throughput Analysis for Energy Harvesting Cognitive Radio Networks with Unslotted Users
    Ma, Honghao
    Jing, Tao
    Zhang, Fan
    Fan, Xin
    Lu, Yanfei
    Huo, Yan
    WIRELESS ALGORITHMS, SYSTEMS, AND APPLICATIONS (WASA 2018), 2018, 10874 : 345 - 356