On generating Sobolev orthogonal polynomials

被引:2
|
作者
Van Buggenhout, Niel [1 ]
机构
[1] Charles Univ Prague, Dept Numer Math, Sokolovska 83, Prague 18675 8, Czech Republic
关键词
NUMERICALLY STABLE RECONSTRUCTION; MATRIX; VANDERMONDE; ITERATIONS; SERIES; ROOTS;
D O I
10.1007/s00211-023-01379-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Sobolev orthogonal polynomials are polynomials orthogonal with respect to a Sobolev inner product, an inner product in which derivatives of the polynomials appear. They satisfy a long recurrence relation that can be represented by a Hessenberg matrix. The problem of generating a finite sequence of Sobolev orthogonal polynomials can be reformulated as a matrix problem, that is, a Hessenberg inverse eigenvalue problem, where the Hessenberg matrix of recurrences is generated from certain known spectral information. Via the connection to Krylov subspaces we show that the required spectral information is the Jordan matrix containing the eigenvalues of the Hessenberg matrix and the normalized first entries of its eigenvectors. Using a suitable quadrature rule the Sobolev inner product is discretized and the resulting quadrature nodes form the Jordan matrix and associated quadrature weights are the first entries of the eigenvectors. We propose two new numerical procedures to compute Sobolev orthonormal polynomials based on solving the equivalent Hessenberg inverse eigenvalue problem.
引用
收藏
页码:415 / 443
页数:29
相关论文
共 50 条
  • [21] Sobolev orthogonal polynomials on product domains
    Fernandez, Lidia
    Marcellan, Francisco
    Perez, Teresa E.
    Pinar, Miguel A.
    Xu, Yuan
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 284 : 202 - 215
  • [22] On Freud–Sobolev type orthogonal polynomials
    Luis E. Garza
    Edmundo J. Huertas
    Francisco Marcellán
    Afrika Matematika, 2019, 30 : 505 - 528
  • [23] Strong asymptotics for Sobolev orthogonal polynomials
    Finkelshtein, AM
    Cabrera, HP
    JOURNAL D ANALYSE MATHEMATIQUE, 1999, 78 (1): : 143 - 156
  • [24] Asymptotic properties of Sobolev orthogonal polynomials
    Martinez-Finkelshtein, A
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 99 (1-2) : 491 - 510
  • [25] RECURRENCE RELATIONS FOR SOBOLEV ORTHOGONAL POLYNOMIALS
    Sultanakhmedov, M. S.
    PROBLEMY ANALIZA-ISSUES OF ANALYSIS, 2020, 9 (02): : 97 - 118
  • [26] Nondiagonal Hermite–Sobolev Orthogonal Polynomials
    María Álvarez de Morales
    Juan J. Moreno–Balcázar
    Teresa E. Pérez
    Miguel A. Piñar
    Acta Applicandae Mathematica, 2000, 61 : 257 - 266
  • [27] On Recurrence Relations for Sobolev Orthogonal Polynomials
    Evans, W. D.
    Littlejohn, L. L.
    Marcellan, F.
    Markett, C.
    SIAM News, 1995, 26 (02):
  • [28] Laguerre-Sobolev orthogonal polynomials
    Marcellan, F
    Perez, TE
    Pinar, MA
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 71 (02) : 245 - 265
  • [29] COMPUTING ORTHOGONAL POLYNOMIALS IN SOBOLEV SPACES
    GAUTSCHI, W
    ZHANG, MD
    NUMERISCHE MATHEMATIK, 1995, 71 (02) : 159 - 183
  • [30] On generating symmetric orthogonal polynomials
    Masjed-Jamei, Mohammad
    Koepf, Wolfram
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2013, 58 (10) : 1373 - 1385