Approximation of discrete functions and Chebyshev polynomials orthogonal on the uniform grid

被引:0
|
作者
I. I. Sharapudinov
机构
[1] Dagestan State Pedagogical University,
来源
Mathematical Notes | 2000年 / 67卷
关键词
Chebyshev polynomial; approximation of discrete functions; weighted estimate; Fourier series;
D O I
暂无
中图分类号
学科分类号
摘要
Let\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\bar \Omega $$ \end{document}N+2m={−m, −m+1, …, −1, 0, 1, …,N−1,N, …,N−1+m}. The present paper is devoted to the approximation of discrete functions of the formf :\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\bar \Omega $$ \end{document}N+2m → ℝ by algebraic polynomials on the grid ΩN={0, 1, …,N−1}. On the basis of two systems of Chebyshev polynomials orthogonal on the sets ΩN+m and ΩN, respectively, we construct a linear operatorYn+2m, N=Yn+2m, N(f), acting in the space of discrete functions as an algebraic polynomial of degree at mostn+2m for which the following estimate holds (x ε ΩN):1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$|f(x) - \mathcal{Y}_{n + 2m,N} (f,x)| \leqslant c(m)z\Theta _{N,m} (x)\left[ {\frac{{x + 1}}{N}\left( {1 - \frac{x}{N}} \right)} \right]^{m/2 - 1/4} \frac{{E_{n + m[g,\ell _2 (\Omega _{N + m} )]} }}{{n^{m - 1/2} }}$$ \end{document} whereEn+m[g,l2(ΩN+m)] is the best approximation of the function1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$g(x) = g(x,m,N) = ((N - 1 + m)/2)^m \Delta ^{^m } f(x - m)$$ \end{document} by algebraic polynomials of degree at mostn+m in the spacel2 (ΩN+m) and the function ΘN, α(x) depends only on the weighted estimate for the Chebyshev polynomialsτkα,α(x, N).
引用
收藏
页码:389 / 397
页数:8
相关论文
共 50 条
  • [21] Uniform approximation by discrete least squares polynomials
    Calvi, Jean-Paul
    Levenberg, Norman
    JOURNAL OF APPROXIMATION THEORY, 2008, 152 (01) : 82 - 100
  • [22] Uniform approximation of functions with discrete approximation functionals
    Chandler, C
    Gibson, AG
    JOURNAL OF APPROXIMATION THEORY, 1999, 100 (02) : 233 - 250
  • [24] GENERATING FUNCTIONS OF THE PRODUCT OF 2-ORTHOGONAL CHEBYSHEV POLYNOMIALS WITH SOME NUMBERS AND THE OTHER CHEBYSHEV POLYNOMIALS
    Merzouk, H.
    Aloui, B.
    Boussayoud, A.
    PROBLEMY ANALIZA-ISSUES OF ANALYSIS, 2021, 10 (01): : 52 - 68
  • [25] Approximation of discrete rules of order distribution by orthogonal discrete polynomials
    Karpov, IG
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII RADIOELEKTRONIKA, 2001, 44 (7-8): : 14A - 23A
  • [26] A New Approach for the Derivation of a Discrete Approximation Formula on Uniform Grid for Harmonic Functions
    Kim, Philsu
    Choi, Hyun Jung
    Ahn, Soyoung
    KYUNGPOOK MATHEMATICAL JOURNAL, 2007, 47 (04): : 529 - 548
  • [27] Discrete orthogonal polynomials associated with Macdonald functions
    S. Yakubovich
    The Ramanujan Journal, 2022, 59 : 1147 - 1170
  • [28] Stieltjes functions and discrete classical orthogonal polynomials
    Bracciali, Cleonice F.
    Perez, Teresa E.
    Pinar, Miguel A.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2013, 32 (03): : 537 - 547
  • [29] Discrete orthogonal polynomials associated with Macdonald functions
    Yakubovich, S.
    RAMANUJAN JOURNAL, 2022, 59 (04): : 1147 - 1170
  • [30] Stieltjes functions and discrete classical orthogonal polynomials
    Cleonice F. Bracciali
    Teresa E. Pérez
    Miguel A. Piñar
    Computational and Applied Mathematics, 2013, 32 : 537 - 547