Wave generation on an interface by vortex disturbances in a shear flow

被引:0
|
作者
M. V. Kalashnik
O. G. Chkhetiani
机构
[1] Russian Academy of Sciences,Obukhov Institute of Atmospheric Physics
[2] Specientific and Industrial Union ”Typhoon”,undefined
[3] Space Research Institute (IKI),undefined
来源
Fluid Dynamics | 2014年 / 49卷
关键词
shear flows; internal gravity waves; wave and vortex disturbances; two-layer system; resonant excitation; Kelvin-Helmholtz instability.;
D O I
暂无
中图分类号
学科分类号
摘要
A linear problem of oscillations of an interface in a two-layer system, in which the upper layer is at rest and the lower layer has a constant velocity shear, is considered. The dynamic perturbations in the lower layer are represented as the sum of vortex and wave disturbances (disturbances with zero vorticity). It is shown that in the shear flow the evolution of the vortex disturbances with a nonsmooth or a singular initial vorticity distribution can result in the resonant excitation of waves on the interface. The occurrence of the resonance corresponds to the coincidence of the oscillation frequencies of the perturbations of both classes. In the absence of hydrodynamic instability of the shear flow, the resonant excitation can be one of the main mechanisms of wave generation in two-layer systems.
引用
收藏
页码:384 / 394
页数:10
相关论文
共 50 条
  • [31] Mechanism of closed vortex formation in shear flow
    Ishizawa, A
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1996, 65 (02) : 439 - 449
  • [32] VORTEX STATIONARY WAVES ON A SHEAR-FLOW
    ABRASHKIN, AA
    ZENKOVICH, DA
    IZVESTIYA AKADEMII NAUK SSSR FIZIKA ATMOSFERY I OKEANA, 1990, 26 (01): : 35 - 46
  • [33] Vortex motion in a weak background shear flow
    Bajer, K
    Bassom, AP
    Gilbert, AD
    JOURNAL OF FLUID MECHANICS, 2004, 509 : 281 - 304
  • [34] Visualizing Shear Stress in Gortler Vortex Flow
    Tandiono
    Winoto, S. H.
    Shah, D. A.
    JOURNAL OF VISUALIZATION, 2009, 12 (03) : 195 - 202
  • [35] Steady interaction of a vortex street with a shear flow
    Crowdy, Darren
    Nelson, Rhodri
    PHYSICS OF FLUIDS, 2010, 22 (09)
  • [36] Motion of a vortex ring in a simple shear flow
    Cheng, M.
    Lou, J.
    Lim, T. T.
    PHYSICS OF FLUIDS, 2009, 21 (08)
  • [37] Vortex cavitation mechanisms in shear layer flow
    Wang, Guoyu
    Cao, Shuliang
    Ikohagi, Toshiaki
    Qinghua Daxue Xuebao/Journal of Tsinghua University, 2001, 41 (10): : 62 - 64
  • [38] DYNAMICS OF A VORTEX FILAMENT IN A SHEAR-FLOW
    AREF, H
    FLINCHEM, EP
    JOURNAL OF FLUID MECHANICS, 1984, 148 (NOV) : 477 - 497
  • [39] Scattering of electromagnetic wave by vortex flow
    Wei, Jian-Ye
    Liu, Jing-Yu
    Mahmood, Waqas
    Zhao, Qing
    PHYSICS LETTERS A, 2017, 381 (16) : 1463 - 1469
  • [40] Vortex generation in oscillatory canopy flow
    Ghisalberti, Marco
    Schlosser, Tamara
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2013, 118 (03) : 1534 - 1542