Boundary Stabilization of a Thermoelastic Diffusion System of Type II

被引:0
|
作者
Moncef Aouadi
Imed Mahfoudhi
Taoufik Moulahi
机构
[1] Université de Carthage,Ecole Nationale d’Ingénieurs de Bizerte
[2] Peoples’ Friendship University of Russia (RUDN University),Faculté des Sciences de Monastir
[3] Université de Monastir,Ecole Nationale d’Ingénieurs de Monastir
[4] Université de Monastir,undefined
来源
关键词
Thermoelastic diffusion of type II; Well-posedness; Exponential decay; Numerical simulations; 35B40; 65L07;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the boundary stabilization of a one-dimensional thermoelastic diffusion problem of type II. The system of equations is a coupling of three hyperbolic equations. This poses some new mathematical and numerical difficulties. With the help of the semigroup theory of linear operators, we prove the well-posedness of the proposed problem. By using the frequency domain method combined with the multiplier technique, we prove the exponential stability of the solutions. Finally, we present a numerical scheme based on the Chebyshev spectral method and we give two numerical examples to validate the proposed model and to show its capability.
引用
收藏
页码:499 / 522
页数:23
相关论文
共 50 条
  • [41] Boundary stabilization of a hybrid system
    Liu, KS
    Liu, ZY
    CONTROL OF DISTRIBUTED PARAMETER AND STOCHASTIC SYSTEMS, 1999, 13 : 95 - 101
  • [42] Waves in nonlocal thermoelastic solids of type II
    Sarkar, Nihar
    De, Soumen
    Sarkar, Nantu
    JOURNAL OF THERMAL STRESSES, 2019, 42 (09) : 1153 - 1170
  • [43] STABILIZATION OF LOCAL PROJECTION TYPE APPLIED TO CONVECTION-DIFFUSION PROBLEMS WITH MIXED BOUNDARY CONDITIONS
    Matthies, Gunar
    Skrzypacz, Piotr
    Tobiska, Lutz
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2008, 32 : 90 - 105
  • [44] Stabilization of local projection type applied to convection-diffusion problems with mixed boundary conditions
    Matthies, Gunar
    Skrzypacz, Piotr
    Tobiska, Lutz
    Electronic Transactions on Numerical Analysis, 2008, 32 : 90 - 105
  • [45] Boundary integral equation formulation for generalized thermoelastic diffusion - Analytical aspects
    Semwal, Shweta
    Mukhopadhyay, Santwana
    APPLIED MATHEMATICAL MODELLING, 2014, 38 (14) : 3523 - 3537
  • [46] Energy decay in thermoelastic diffusion theory with second sound and dissipative boundary
    Aouadi, Moncef
    Lazzari, Barbara
    Nibbi, Roberta
    MECCANICA, 2013, 48 (09) : 2159 - 2171
  • [47] Energy decay in thermoelastic diffusion theory with second sound and dissipative boundary
    Moncef Aouadi
    Barbara Lazzari
    Roberta Nibbi
    Meccanica, 2013, 48 : 2159 - 2171
  • [48] Global existence and numerical simulations for a thermoelastic diffusion problem in moving boundary
    Madureira, Rodrigo L. R.
    Rincon, Mauro A.
    Aouadi, Moncef
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2019, 166 : 410 - 431
  • [49] Boundary stabilization of memory type in thermoelasticity of type III
    Messaoudi, Salim A.
    Sufyane, Abdelaziz
    APPLICABLE ANALYSIS, 2008, 87 (01) : 13 - 28
  • [50] Determining the Coefficients of the Thermoelastic System from Boundary Information
    Tan, Xiaoming
    MATHEMATICS, 2023, 11 (09)