An abelian ℓ-group with strong unit (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\user1{\mathcal{L}}_1 $\end{document}-object) G is hyperarchimedean (HA) iff G ≤ C(YG) (the ℓ-group of real continuous functions on the maximal ideal space, YG) with λ(g) = inf{ ∣ g(x) ∣ ≠ 0} > 0 for each 0 ≠ g ∈ G. In case inf{λ(g):0 ≠ g ∈ G} > 0, we call Guniformly hyperarchimedean (UHA). This paper: examines the structure of the UHA groups in detail; shows that UHA solves the problem: when is an \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\user1{\mathcal{L}}_1 $\end{document}-product HA?; describes completely the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\user1{\mathcal{L}}_1 $\end{document} − HSP-classes which are contained in HA. Final remarks detail the connection with MV-algebras.
机构:
Irkutsk Teachers Training Univ, Dept Math Phys & Informat, Irkutsk 664011, RussiaIrkutsk Teachers Training Univ, Dept Math Phys & Informat, Irkutsk 664011, Russia
Bludov, V. V.
Glass, A. M. W.
论文数: 0引用数: 0
h-index: 0
机构:
Ctr Math Sci, Dept Pure Math & Math Stat, Cambridge CB3 0WB, EnglandIrkutsk Teachers Training Univ, Dept Math Phys & Informat, Irkutsk 664011, Russia