Least energy sign-changing solutions for Kirchhoff–Poisson systems

被引:0
|
作者
Guoqing Chai
Weiming Liu
机构
[1] Hubei Normal University,College of Mathematics and Statistics
来源
关键词
Kirchhoff–Poisson systems; Least energy sign-changing solutions; Constraint variational method; Nodal domains;
D O I
暂无
中图分类号
学科分类号
摘要
The paper deals with the following Kirchhoff–Poisson systems: 0.1{−(1+b∫R3|∇u|2dx)Δu+u+k(x)ϕu+λ|u|p−2u=h(x)|u|q−2u,x∈R3,−Δϕ=k(x)u2,x∈R3,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \textstyle\begin{cases} - ( {1+b\int _{{\mathbb{R}}^{3}} { \vert \nabla u \vert ^{2}\,dx} } ) \Delta u+u+k(x)\phi u+\lambda \vert u \vert ^{p-2}u=h(x) \vert u \vert ^{q-2}u, & x\in {\mathbb{R}}^{3}, \\ -\Delta \phi =k(x)u^{2}, & x\in {\mathbb{R}}^{3}, \end{cases} $$\end{document} where the functions k and h are nonnegative, 0≤λ,b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0\le \lambda , b$\end{document}; 2≤p≤4<q<6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2\le p\le 4< q<6$\end{document}. Via a constraint variational method combined with a quantitative lemma, some existence results on one least energy sign-changing solution with two nodal domains to the above systems are obtained. Moreover, the convergence property of ub\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u_{b}$\end{document} as b↘0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$b \searrow 0$\end{document} is established.
引用
收藏
相关论文
共 50 条
  • [41] Least Energy Sign-Changing Solution for N-Kirchhoff Problems with Logarithmic and Exponential Nonlinearities
    Huang, Ting
    Shang, Yan-Ying
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2024, 18 (03)
  • [42] Least Energy Sign-Changing Solution for N-Kirchhoff Problems with Logarithmic and Exponential Nonlinearities
    Ting Huang
    Yan-Ying Shang
    Complex Analysis and Operator Theory, 2024, 18
  • [43] Positive and sign-changing solutions for Kirchhoff equations with indefinite potential
    Yang, Yan-Fei
    Tang, Chun-Lei
    COMMUNICATIONS IN ANALYSIS AND MECHANICS, 2025, 17 (01): : 159 - 187
  • [44] A NOTE ON SIGN-CHANGING SOLUTIONS FOR THE SCHRODINGER POISSON SYSTEM
    Guo, Hui
    Wang, Tao
    ELECTRONIC RESEARCH ARCHIVE, 2020, 28 (01): : 195 - 203
  • [45] Multiple Sign-Changing Solutions for Kirchhoff-Type Equations
    Li, Xingping
    He, Xiumei
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2015, 2015
  • [46] Multiple sign-changing solutions for nonlinear fractional Kirchhoff equations
    Yang Wang
    Yansheng Liu
    Yujun Cui
    Boundary Value Problems, 2018
  • [47] Multiple sign-changing solutions for nonlinear fractional Kirchhoff equations
    Wang, Yang
    Liu, Yansheng
    Cui, Yujun
    BOUNDARY VALUE PROBLEMS, 2018,
  • [48] MULTIPLE POSITIVE SOLUTIONS FOR KIRCHHOFF PROBLEMS WITH SIGN-CHANGING POTENTIAL
    Liu, Gao-Sheng
    Lei, Chun-Yu
    Guo, Liu-Tao
    Rong, Hong
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2015,
  • [49] Sign-changing solutions for a modified quasilinear Kirchhoff-Schrodinger-Poisson system via perturbation method
    Zhang, Jing
    Ji, Chao
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2023, 68 (10) : 1715 - 1733
  • [50] Multiplicity of sign-changing solutions for Kirchhoff-type equations
    Cassani, Daniele
    Liu, Zhisu
    Tarsi, Cristina
    Zhang, Jianjun
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 186 : 145 - 161