Least energy sign-changing solutions for Kirchhoff–Poisson systems

被引:0
|
作者
Guoqing Chai
Weiming Liu
机构
[1] Hubei Normal University,College of Mathematics and Statistics
来源
关键词
Kirchhoff–Poisson systems; Least energy sign-changing solutions; Constraint variational method; Nodal domains;
D O I
暂无
中图分类号
学科分类号
摘要
The paper deals with the following Kirchhoff–Poisson systems: 0.1{−(1+b∫R3|∇u|2dx)Δu+u+k(x)ϕu+λ|u|p−2u=h(x)|u|q−2u,x∈R3,−Δϕ=k(x)u2,x∈R3,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \textstyle\begin{cases} - ( {1+b\int _{{\mathbb{R}}^{3}} { \vert \nabla u \vert ^{2}\,dx} } ) \Delta u+u+k(x)\phi u+\lambda \vert u \vert ^{p-2}u=h(x) \vert u \vert ^{q-2}u, & x\in {\mathbb{R}}^{3}, \\ -\Delta \phi =k(x)u^{2}, & x\in {\mathbb{R}}^{3}, \end{cases} $$\end{document} where the functions k and h are nonnegative, 0≤λ,b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0\le \lambda , b$\end{document}; 2≤p≤4<q<6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2\le p\le 4< q<6$\end{document}. Via a constraint variational method combined with a quantitative lemma, some existence results on one least energy sign-changing solution with two nodal domains to the above systems are obtained. Moreover, the convergence property of ub\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u_{b}$\end{document} as b↘0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$b \searrow 0$\end{document} is established.
引用
收藏
相关论文
共 50 条
  • [1] Least energy sign-changing solutions for Kirchhoff-Poisson systems
    Chai, Guoqing
    Liu, Weiming
    BOUNDARY VALUE PROBLEMS, 2019, 2019 (01)
  • [2] Least energy sign-changing solutions for a class of fractional Kirchhoff-Poisson system
    Meng, Yuxi
    Zhang, Xingrui
    He, Xiaoming
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (09)
  • [3] Least-energy sign-changing solutions for Kirchhoff-Schrodinger-Poisson systems in R3
    Wang, Da-Bin
    Li, Tian-Jun
    Hao, Xinan
    BOUNDARY VALUE PROBLEMS, 2019,
  • [4] Least energy sign-changing solutions for Kirchhoff-Schrodinger-Poisson system on bounded domains
    Su, Xia
    Guan, Wen
    Li, Xia
    ELECTRONIC RESEARCH ARCHIVE, 2023, 31 (05): : 2959 - 2973
  • [5] Least energy sign-changing solutions of Kirchhoff equation on bounded domains
    Li, Xia
    Guan, Wen
    Wang, Da-Bin
    AIMS MATHEMATICS, 2022, 7 (05): : 8879 - 8890
  • [6] Least energy sign-changing solutions of fractional Kirchhoff-Schrodinger-Poisson system with critical growth
    Wang, Da-Bin
    Zhang, Jin-Long
    APPLIED MATHEMATICS LETTERS, 2020, 106
  • [7] Least energy sign-changing solutions for Schrodinger-Poisson systems with potential well
    Chen, Xiao-Ping
    Tang, Chun-Lei
    ADVANCED NONLINEAR STUDIES, 2022, 22 (01) : 390 - 415
  • [8] Least energy sign-changing solutions for fractional critical Kirchhoff-Schrodinger-Poisson with steep potential well
    Feng, Shenghao
    Chen, Jianhua
    Sun, Jijiang
    Huang, Xianjiu
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2024, 27 (01) : 124 - 156
  • [9] Least energy sign-changing solutions for fractional critical Kirchhoff–Schrödinger–Poisson with steep potential well
    Shenghao Feng
    Jianhua Chen
    Jijiang Sun
    Xianjiu Huang
    Fractional Calculus and Applied Analysis, 2024, 27 : 124 - 156
  • [10] Least energy sign-changing solutions of fractional Kirchhoff-Schrodinger-Poisson system with critical and logarithmic nonlinearity
    Feng, Shenghao
    Wang, Li
    Huang, Ling
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2023, 68 (01) : 81 - 106