A replacement strategy for regulating local environment of single-atom Co-SxN4−x catalysts to facilitate CO2 electroreduction

被引:0
|
作者
Jiajing Pei
Huishan Shang
Junjie Mao
Zhe Chen
Rui Sui
Xuejiang Zhang
Danni Zhou
Yu Wang
Fang Zhang
Wei Zhu
Tao Wang
Wenxing Chen
Zhongbin Zhuang
机构
[1] Beijing University of Chemical Technology,State Key Lab of Organic
[2] Beijing Institute of Technology,Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering
[3] Anhui Normal University,Energy & Catalysis Center, School of Materials Science and Engineering
[4] Westlake University,College of Chemistry and Materials Science
[5] Chinese Academy of Science,Center of Artificial Photosynthesis for Solar Fuels, School of Science
[6] Beijing Institute of Technology,Shanghai Synchrotron Radiation Facilities, Shanghai Institute of Applied Physics
[7] Beijing University of Chemical Technology,Analysis and Testing Center, Beijing Institute of Technology
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The performances of single-atom catalysts are governed by their local coordination environments. Here, a thermal replacement strategy is developed for the synthesis of single-atom catalysts with precisely controlled and adjustable local coordination environments. A series of Co-SxN4−x (x = 0, 1, 2, 3) single-atom catalysts are successfully synthesized by thermally replacing coordinated N with S at elevated temperature, and a volcano relationship between coordinations and catalytic performances toward electrochemical CO2 reduction is observed. The Co-S1N3 catalyst has the balanced COOH*and CO* bindings, and thus locates at the apex of the volcano with the highest performance toward electrochemical CO2 reduction to CO, with the maximum CO Faradaic efficiency of 98 ± 1.8% and high turnover frequency of 4564 h−1 at an overpotential of 410 mV tested in H-cell with CO2-saturated 0.5 M KHCO3, surpassing most of the reported single-atom catalysts. This work provides a rational approach to control the local coordination environment of the single-atom catalysts, which is important for further fine-tuning the catalytic performance.
引用
收藏
相关论文
共 50 条
  • [31] Efficient electroreduction of CO2 to CO on silver single-atom catalysts: Activity enhancement through coordinated modulation of polyaniline
    Zhang, Teng
    Lu, Xingyu
    Qi, Wei
    Qin, Gaowu
    Li, Song
    APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2024, 349
  • [32] Achieving Efficient CO2 Electrolysis to CO by Local Coordination Manipulation of Nickel Single-Atom Catalysts
    Chen, Zhaoyang
    Wang, Chuanhao
    Zhong, Xian
    Lei, Hao
    Li, Jiawei
    Ji, Yuan
    Liu, Chunxiao
    Ding, Mao
    Dai, Yizhou
    Li, Xu
    Zheng, Tingting
    Jiang, Qiu
    Peng, Hong-Jie
    Xia, Chuan
    NANO LETTERS, 2023, 23 (15) : 7046 - 7053
  • [33] Understanding the role of axial O in CO2 electroreduction on NiN4 single-atom catalysts via simulations in realistic electrochemical environment
    Hu, Xu
    Yao, Sai
    Chen, Letian
    Zhang, Xu
    Jiao, Menggai
    Lu, Zhengyu
    Zhou, Zhen
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (41) : 23515 - 23521
  • [34] Universal domino reaction strategy for mass production of single-atom metal-nitrogen catalysts for boosting CO2 electroreduction
    Wang, Xingpu
    Ding, Shaosong
    Yue, Tong
    Zhu, Ying
    Fang, Mingwei
    Li, Xueyan
    Xiao, Guozheng
    Dai, Liming
    NANO ENERGY, 2021, 82
  • [35] Spontaneous Metal-Chelation Strategy for Highly Dense Ni Single-Atom Catalysts with Asymmetric Coordination in CO2 Electroreduction
    Kim, Jae Hak
    Kim, Jaehyun
    Ma, Joonhee
    Cho, Jin Hyuk
    Jeong, Jaemin
    Iimura, Soshi
    Jang, Ho Won
    Kim, Soo Young
    SMALL, 2025, 21 (05)
  • [36] Regulating CO2/H2O ratio of Ni-N-C single-atom catalysts through hydrophobicity engineering for acidic CO2 electroreduction
    Kang, Zhongyin
    Zhang, Min
    Wang, Yang
    Yue, Pengtao
    Li, Jun
    Zhu, Xun
    Fu, Qian
    Liao, Qiang
    CATALYSIS TODAY, 2025, 450
  • [37] Regulating the Critical Intermediates of Dual-Atom Catalysts for CO2 Electroreduction
    Zhang, Mengyang
    Zhou, Dingyang
    Mu, Xueqin
    Wang, Dingsheng
    Liu, Suli
    Dai, Zhihui
    SMALL, 2024, 20 (40)
  • [38] Regulating the Critical Intermediates of Dual-Atom Catalysts for CO2 Electroreduction
    Zhang, Mengyang
    Zhou, Dingyang
    Mu, Xueqin
    Wang, Dingsheng
    Liu, Suli
    Dai, Zhihui
    SMALL, 2024, 20 (40)
  • [39] Universal Principle to Describe Reactivity and Selectivity of CO2 Electroreduction on Transition Metals and Single-Atom Catalysts
    Guan, Xin
    Zhao, Chenxu
    Liu, Xin
    Liu, Shanping
    Gao, Wang
    Jiang, Qing
    JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (47): : 25898 - 25906
  • [40] First-Principles Insights into the Selectivity of CO2 Electroreduction over Heterogeneous Single-Atom Catalysts
    Liu, Tianyang
    Jing, Yu
    Li, Yafei
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2024, 15 (23): : 6216 - 6221