Sets of Approximation and Interpolation in ℂ for Manifold-Valued Maps

被引:0
|
作者
Debraj Chakrabarti
机构
[1] University of Western Ontario,Department of Mathematics
来源
Journal of Geometric Analysis | 2008年 / 18卷
关键词
Mergelyan-type Approximation; Manifold-valued maps; 32Q99; 32H02; 30E10;
D O I
暂无
中图分类号
学科分类号
摘要
We give examples of non-smooth sets in the complex plane with the property that every holomorphic map continuous to the boundary from these sets into any complex manifold may be uniformly approximated by maps holomorphic in some neighborhood of the set (Mergelyan-type approximation for manifold-valued maps.) Similar results are proved for sections of complex-valued holomorphic submersions from complex manifolds.
引用
收藏
页码:720 / 739
页数:19
相关论文
共 50 条
  • [21] Random forest regression for manifold-valued responses
    Tsagkrasoulis, Dimosthenis
    Montana, Giovanni
    PATTERN RECOGNITION LETTERS, 2018, 101 : 6 - 13
  • [22] Total Generalized Variation for Manifold-Valued Data
    Bredies, K.
    Holler, M.
    Storath, M.
    Weinmann, A.
    SIAM JOURNAL ON IMAGING SCIENCES, 2018, 11 (03): : 1785 - 1848
  • [23] Intrinsic Regression Models for Manifold-Valued Data
    Shi, Xiaoyan
    Styner, Martin
    Lieberman, Jeffrey
    Ibrahim, Joseph G.
    Lin, Weili
    Zhu, Hongtu
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2009, PT II, PROCEEDINGS, 2009, 5762 : 192 - +
  • [24] The Manifold-Valued Dirichlet Problem for Symmetric Diffusions
    Jean Picard
    Potential Analysis, 2001, 14 : 53 - 72
  • [25] Human Activity as a Manifold-Valued Random Process
    Yi, Sheng
    Krim, Hamid
    Norris, Larry K.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 21 (08) : 3416 - 3428
  • [26] Geodesic Discriminant Analysis for manifold-valued data
    Louis, Maxime
    Charlier, Benjamin
    Durrleman, Stanley
    PROCEEDINGS 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2018, : 445 - 453
  • [27] Intrinsic characterization of manifold-valued generalized functions
    Kunzinger, M
    Steinbauer, R
    Vickers, JA
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2003, 87 : 451 - 470
  • [28] The manifold-valued Dirichlet problem for symmetric diffusions
    Picard, J
    POTENTIAL ANALYSIS, 2001, 14 (01) : 53 - 72
  • [29] Kriging prediction for manifold-valued random fields
    Pigoli, Davide
    Menafoglio, Alessandra
    Secchi, Piercesare
    JOURNAL OF MULTIVARIATE ANALYSIS, 2016, 145 : 117 - 131
  • [30] Total Variation Regularization for Manifold-Valued Data
    Weinmann, Andreas
    Demaret, Laurent
    Storath, Martin
    SIAM JOURNAL ON IMAGING SCIENCES, 2014, 7 (04): : 2226 - 2257