Sets of Approximation and Interpolation in ℂ for Manifold-Valued Maps

被引:0
|
作者
Debraj Chakrabarti
机构
[1] University of Western Ontario,Department of Mathematics
来源
Journal of Geometric Analysis | 2008年 / 18卷
关键词
Mergelyan-type Approximation; Manifold-valued maps; 32Q99; 32H02; 30E10;
D O I
暂无
中图分类号
学科分类号
摘要
We give examples of non-smooth sets in the complex plane with the property that every holomorphic map continuous to the boundary from these sets into any complex manifold may be uniformly approximated by maps holomorphic in some neighborhood of the set (Mergelyan-type approximation for manifold-valued maps.) Similar results are proved for sections of complex-valued holomorphic submersions from complex manifolds.
引用
收藏
页码:720 / 739
页数:19
相关论文
共 50 条
  • [1] Sets of approximation and interpolation in C for manifold-valued maps
    Chakrabarti, Debraj
    JOURNAL OF GEOMETRIC ANALYSIS, 2008, 18 (03) : 720 - 739
  • [2] Manifold-Valued Holomorphic Approximation
    Stout, Edgar Lee
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2011, 54 (02): : 370 - 380
  • [3] Scattered manifold-valued data approximation
    Grohs, Philipp
    Sprecher, Markus
    Yu, Thomas
    NUMERISCHE MATHEMATIK, 2017, 135 (04) : 987 - 1010
  • [4] Scattered manifold-valued data approximation
    Philipp Grohs
    Markus Sprecher
    Thomas Yu
    Numerische Mathematik, 2017, 135 : 987 - 1010
  • [5] Lifting for manifold-valued maps of bounded variation
    Canevari, Giacomo
    Orlandi, Giandomenico
    JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 278 (10)
  • [6] SINGULAR PERTURBATION OF MANIFOLD-VALUED MAPS WITH ANISOTROPIC ENERGY
    Contreras, Andres
    Lamy, Xavier
    ANALYSIS & PDE, 2022, 15 (06): : 1531 - 1560
  • [7] MERGELYAN'S AND ARAKELIAN'S THEOREMS FOR MANIFOLD-VALUED MAPS
    Forstneric, Franc
    MOSCOW MATHEMATICAL JOURNAL, 2019, 19 (03) : 465 - 484
  • [8] Manifold-valued martingales, changes of probabilities, and smoothness of finely harmonic maps
    Arnaudon, M
    Li, XM
    Thalmaier, A
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 1999, 35 (06): : 765 - 791
  • [9] ON MULTISCALE QUASI-INTERPOLATION OF SCATTERED SCALAR- AND MANIFOLD-VALUED FUNCTIONS
    Sharon, Nir
    Cohen, Rafael Sherbu
    Wendland, Holger
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2023, 45 (05): : A2458 - A2482
  • [10] Manifold-valued Dirichlet Processes
    Kim, Hyunwoo J.
    Xu, Jia
    Vemuri, Baba C.
    Singh, Vikas
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 1199 - 1208