The Hamiltonian of Einstein affine-metric formulation of General Relativity

被引:0
|
作者
N. Kiriushcheva
S. V. Kuzmin
机构
[1] Huron University College,Faculty of Arts and Social Science
[2] University of Western Ontario,Department of Applied Mathematics
来源
关键词
Gauge Invariance; Canonical Transformation; Hamiltonian Formulation; Gauge Parameter; Loop Quantum Gravity;
D O I
暂无
中图分类号
学科分类号
摘要
It is shown that the Hamiltonian of the Einstein affine-metric (first-order) formulation of General Relativity (GR) leads to a constraint structure that allows the restoration of its unique gauge invariance, four-diffeomorphism, without the need of any field dependent redefinition of gauge parameters as in the case of the second-order formulation. In the second-order formulation of ADM gravity the need for such a redefinition is the result of the non-canonical change of variables (arXiv:0809.0097). For the first-order formulation, the necessity of such a redefinition “to correspond to diffeomorphism invariance” (reported by Ghalati, arXiv:0901.3344) is just an artifact of using the Henneaux–Teitelboim–Zanelli ansatz (Nucl. Phys. B 332:169, 1990), which is sensitive to the choice of linear combination of tertiary constraints. This ansatz cannot be used as an algorithm for finding a gauge invariance, which is a unique property of a physical system, and it should not be affected by different choices of linear combinations of non-primary first class constraints. The algorithm of Castellani (Ann. Phys. 143:357, 1982) is free from such a deficiency and it leads directly to four-diffeomorphism invariance for first, as well as for second-order Hamiltonian formulations of GR. The distinct role of primary first class constraints, the effect of considering different linear combinations of constraints, the canonical transformations of phase-space variables, and their interplay are discussed in some detail for Hamiltonians of the second- and first-order formulations of metric GR. The first-order formulation of Einstein–Cartan theory, which is the classical background of Loop Quantum Gravity, is also discussed.
引用
收藏
页码:389 / 422
页数:33
相关论文
共 50 条