Computational mesomechanics of titanium surface-hardened by ultrasonic treatment

被引:0
|
作者
R. R. Balokhonov
V. A. Romanova
A. V. Panin
M. S. Kazachenok
机构
[1] Russian Academy of Sciences,Institute of Strength Physics and Materials Science, Siberian Branch
[2] National Research Tomsk Polytechnic University,undefined
来源
Physical Mesomechanics | 2017年 / 20卷
关键词
mechanics of structured media; numerical modeling; modified surface layers; ultrasonic surface treatment; plastic strain localization;
D O I
暂无
中图分类号
学科分类号
摘要
This paper studies plastic strain localization and stress-strain evolution in commercial titanium specimens with an ultrasonically treated surface. A dynamic plane strain boundary-value problem is numerically solved by the finite difference method. The microstructure and mechanical properties of the composition are specified in the calculations based on microhardness measurements, mechanical tensile tests, and metallographic studies. The dependences of the plastic flow localization characteristics on the geometry and mechanical properties of ultrasonically treated surface layers have been established. Plastic strain localization is found to depend on the geometry and mechanical properties of ultrasonically treated surface layers.
引用
收藏
页码:334 / 342
页数:8
相关论文
共 50 条
  • [31] Diagnostics of premature damage to surface-hardened industrial concrete floors
    Glinicki, Michal A.
    Jozwiak-Niedzwiedzka, Daria
    M.Brandt, Andrzej
    CEMENT WAPNO BETON, 2023, 28 (06): : 409 - 427
  • [32] Influence of induction tempering on the bending strength of surface-hardened microstructures
    Madler, K.
    Grosch, J.
    HTM - Journal of Heat Treatment and Materials, 2001, 56 (05): : 332 - 340
  • [33] POTENTIOMETRIC NON-DESTRUCTIVE TESTING OF SURFACE-HARDENED MATERIALS
    OMINI, M
    IAZZI, F
    RASTALDO, A
    TURCO, C
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1981, 52 (07): : 1054 - 1060
  • [34] Predicting the Fatigue Limit of Surface-Hardened Parts with Stress Concentrators
    Pavlov V.F.
    Bukatyi A.S.
    Semenova O.Y.
    Russian Engineering Research, 2019, 39 (04) : 283 - 287
  • [35] Increasing the Accuracy of Measuring the Hardness of Surface-Hardened Steel Products
    Valko A.L.
    Rudenko S.P.
    Sandomirskii S.G.
    Steel in Translation, 2022, 52 (06) : 633 - 637
  • [36] FACTORS AFFECTING THE POSITION OF THE FATIGUE FRACTURE IN A SURFACE-HARDENED MATERIAL
    BOITSOV, BV
    SOVIET ENGINEERING RESEARCH, 1985, 5 (06): : 2 - 4
  • [37] METASTABLE PHASE IN CARBON-STEELS SURFACE-HARDENED WITH SILICON
    VENGRENOVICH, RD
    UDOVITSKIY, VI
    GORICHOK, BO
    RUSSIAN METALLURGY, 1980, (03): : 152 - 153
  • [38] SURFACE FAILURE OF SOFT AND SURFACE-HARDENED STEEL ROLLERS IN ROLLING-CONTACT
    FUJITA, K
    YOSHIDA, A
    WEAR, 1979, 55 (01) : 27 - 39
  • [39] Layer Approach to Model Fatigue Strength of Surface-Hardened Components
    Dobberke, Denes
    Leitner, Martin
    Wiebesiek, Jens
    Froeschl, Juergen
    METALS, 2024, 14 (07)
  • [40] Optimization of the parameters of the surface-hardened layer in laser quenching of components
    Kondrat'ev, S. Yu
    Gorynin, V.I.
    Popov, V.O.
    Welding International, 2012, 26 (08) : 629 - 632