Tractable Latent State Filtering for Non-Linear DSGE Models Using a Second-Order Approximation and Pruning

被引:0
|
作者
Robert Kollmann
机构
[1] Université Libre de Bruxelles,European Centre for Advanced Research in Economics and Statistics (ECARES)
[2] Centre for Economic Policy Research (CEPR),Centre for Applied Macroeconomic Analysis (CAMA)
[3] Université Paris-Est,Globalization and Monetary Policy Institute
[4] Australian National University,undefined
[5] The Federal Reserve Bank of Dallas,undefined
来源
Computational Economics | 2015年 / 45卷
关键词
Latent state filtering; DSGE model estimation; Second-order approximation; Pruning; Quadratic Kalman filter; C63; C68; E37;
D O I
暂无
中图分类号
学科分类号
摘要
This paper develops a novel approach for estimating latent state variables of Dynamic Stochastic General Equilibrium (DSGE) models that are solved using a second-order accurate approximation. I apply the Kalman filter to a state-space representation of the second-order solution based on the ‘pruning’ scheme of Kim et al. (J Econ Dyn Control 32:3397–3414, 2008). By contrast to particle filters, no stochastic simulations are needed for the deterministic filter here; the present method is thus much faster; in terms of estimation accuracy for latent states it is competitive with the standard particle filter. Use of the pruning scheme distinguishes the filter here from the deterministic Quadratic Kalman filter presented by Ivashchenko (Comput Econ, 43:71–82, 2014). The filter here performs well even in models with big shocks and high curvature.
引用
收藏
页码:239 / 260
页数:21
相关论文
共 50 条
  • [21] Non-linear second-order periodic systems with non-smooth potential
    Papageorgiou, EH
    Papageorgiou, NS
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2004, 114 (03): : 269 - 298
  • [22] The intermittent behavior of a second-order non-linear non-autonomous oscillator
    Stavrinides, S. G.
    Deliolanis, N. C.
    Laopoulos, Th.
    Kyprianidis, I. M.
    Miliou, A. N.
    Anagnostopoulos, A. N.
    CHAOS SOLITONS & FRACTALS, 2008, 36 (05) : 1191 - 1199
  • [23] APPROXIMATION SCHEMES FOR NON-LINEAR SECOND ORDER EQUATIONS ON THE HEISENBERG GROUP
    Ochoa, Pablo
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2015, 14 (05) : 1841 - 1863
  • [24] Homogenization of non-linear second-order elliptic equations in perforated domains
    Zhikov, VV
    Rychago, ME
    IZVESTIYA MATHEMATICS, 1997, 61 (01) : 69 - 88
  • [25] A non-linear second-order stochastic model of ocean surface waves
    Joelson, M
    Ramamonjiarisoa, A
    OCEANOLOGICA ACTA, 2001, 24 (05) : 409 - 415
  • [26] On Singularities of Certain Non-linear Second-Order Ordinary Differential Equations
    Galina Filipuk
    Thomas Kecker
    Results in Mathematics, 2022, 77
  • [27] Second-order non-linear optical properties of 'bent' ferrocenyl derivatives
    Campo, JA
    Cano, M
    Heras, JV
    López-Garabito, C
    Pinilla, E
    Torres, R
    Rojo, G
    Agulló-López, F
    JOURNAL OF MATERIALS CHEMISTRY, 1999, 9 (04) : 899 - 907
  • [28] Second-order non-linear optical properties of Fe(SALEN) complexes
    Chiang, W
    Vanengen, D
    Thompson, ME
    POLYHEDRON, 1996, 15 (14) : 2369 - 2376
  • [29] On Singularities of Certain Non-linear Second-Order Ordinary Differential Equations
    Filipuk, Galina
    Kecker, Thomas
    RESULTS IN MATHEMATICS, 2022, 77 (01)
  • [30] Second-order averaging and Melnikov analyses for forced non-linear oscillators
    Yagasaki, K
    JOURNAL OF SOUND AND VIBRATION, 1996, 190 (04) : 587 - 609