Stability of Mixed Additive–Quadratic and Additive–Drygas Functional Equations

被引:0
|
作者
Chang-Kwon Choi
Bogeun Lee
机构
[1] Kunsan National University,Department of Mathematics and Hwangrong Talent Education Institute
[2] Chonbuk National University,Department of Mathematics and Institute of Pure and Applied Mathematics
来源
Results in Mathematics | 2020年 / 75卷
关键词
Baire category theorem; Hyers–Ulam stability; Additive; Quadratic; Drygas; Functional equation; Lebesgue measure zero; 39B82;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, using the Baire category theorem we investigate the Hyers–Ulam stability problem of mixed additive–quadratic and additive–Drygas functional equations 2f(x+y)+f(x-y)-3f(x)-3f(y)=0,2f(x+y)+f(x-y)-3f(x)-2f(y)-f(-y)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} 2f(x+y) + f(x-y) - 3f(x) -3f(y)&= 0,\\ 2f(x+y) + f(x-y) - 3f(x) -2f(y) -f(-y)&= 0 \end{aligned}$$\end{document}on a set of Lebesgue measure zero. As a consequence, we obtain asymptotic behaviors of the functional equations.
引用
收藏
相关论文
共 50 条
  • [31] On the stability of a mixed functional equation deriving from additive, quadratic and cubic mappings
    Wang, Li Guang
    Xu, Kun Peng
    Liu, Qiu Wen
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2014, 30 (06) : 1033 - 1049
  • [32] Stability of a mixed additive and quadratic functional equation in quasi-Banach spaces
    Nguyen Van Dung
    Vo Thi Le Hang
    Journal of Fixed Point Theory and Applications, 2018, 20
  • [33] On the Stability of a Mixed Functional Equation Deriving from Additive, Quadratic and Cubic Mappings
    Li Guang WANG
    Kun Peng XU
    Qiu Wen LIU
    Acta Mathematica Sinica(English Series), 2014, 30 (06) : 1033 - 1049
  • [34] Fuzzy Stability of Generalized Mixed Type Cubic, Quadratic, and Additive Functional Equation
    Gordji, Madjid Eshaghi
    Kamyar, Mahdie
    Khodaei, Hamid
    Shin, Dong Yun
    Park, Choonkil
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2011, : 1 - 22
  • [35] Stability of a mixed additive and quadratic functional equation in quasi-Banach spaces
    Nguyen Van Dung
    Vo Thi Le Hang
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2018, 20 (03)
  • [36] A General Theorem on the Stability of a Class of Functional Equations Including Cubic-Quadratic-Additive Equations
    Lee, Yang-Hi
    Jung, Soon-Mo
    MATHEMATICS, 2018, 6 (12):
  • [37] STABILITY OF s-VARIABLE ADDITIVE AND l-VARIABLE QUADRATIC FUNCTIONAL EQUATIONS
    Govindan, Vediyappan
    Pinelas, Sandra
    Lee, Jung Rye
    JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2022, 29 (02): : 179 - 188
  • [38] Stability of additive-quadratic ρ-functional equations in Banach spaces: a fixed point approach
    Park, Choonkil
    Kim, Sang Og
    Alaca, Cihangir
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (03): : 1252 - 1262
  • [39] STABILITY OF A MIXED ADDITIVE AND QUADRATIC FUNCTIONAL EQUATION IN NON-ARCHIMEDEAN BANACH MODULES
    Eskandani, G. Zamani
    Vaezi, Hamid
    Dehghan, Y. N.
    TAIWANESE JOURNAL OF MATHEMATICS, 2010, 14 (04): : 1309 - 1324
  • [40] Stability of a mixed type additive and quadratic functional equation in non-Archimedean spaces
    Gordji, M. Eshaghi
    Savadkouhi, M. Bavand
    Bidkham, M.
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2010, 12 (02) : 454 - 462