Predicting glass structure by physics-informed machine learning

被引:0
|
作者
Mikkel L. Bødker
Mathieu Bauchy
Tao Du
John C. Mauro
Morten M. Smedskjaer
机构
[1] Aalborg University,Department of Chemistry and Bioscience
[2] University of California,Physics of AmoRphous and Inorganic Solids Laboratory (PARISlab), Department of Civil and Environmental Engineering
[3] The Pennsylvania State University,Department of Materials Science and Engineering
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Machine learning (ML) is emerging as a powerful tool to predict the properties of materials, including glasses. Informing ML models with knowledge of how glass composition affects short-range atomic structure has the potential to enhance the ability of composition-property models to extrapolate accurately outside of their training sets. Here, we introduce an approach wherein statistical mechanics informs a ML model that can predict the non-linear composition-structure relations in oxide glasses. This combined model offers an improved prediction compared to models relying solely on statistical physics or machine learning individually. Specifically, we show that the combined model accurately both interpolates and extrapolates the structure of Na2O–SiO2 glasses. Importantly, the model is able to extrapolate predictions outside its training set, which is evidenced by the fact that it is able to predict the structure of a glass series that was kept fully hidden from the model during its training.
引用
收藏
相关论文
共 50 条
  • [21] Parsimony as the ultimate regularizer for physics-informed machine learning
    J. Nathan Kutz
    Steven L. Brunton
    Nonlinear Dynamics, 2022, 107 : 1801 - 1817
  • [22] Parsimony as the ultimate regularizer for physics-informed machine learning
    Kutz, J. Nathan
    Brunton, Steven L.
    NONLINEAR DYNAMICS, 2022, 107 (03) : 1801 - 1817
  • [23] Physics-Informed Machine Learning for Optical Modes in Composites
    Ghosh, Abantika
    Elhamod, Mohannad
    Bu, Jie
    Lee, Wei-Cheng
    Karpatne, Anuj
    Podolskiy, Viktor A.
    ADVANCED PHOTONICS RESEARCH, 2022, 3 (11):
  • [24] Physics-Informed Machine Learning for metal additive manufacturing
    Farrag, Abdelrahman
    Yang, Yuxin
    Cao, Nieqing
    Won, Daehan
    Jin, Yu
    PROGRESS IN ADDITIVE MANUFACTURING, 2025, 10 (01) : 171 - 185
  • [25] Machine learning for structural stability: Predicting dynamics responses using physics-informed neural networks
    Li, Zhonghong
    Yan, Gongxing
    COMPUTERS AND CONCRETE, 2022, 29 (06): : 419 - 432
  • [26] Physics-informed machine learning models for ship speed prediction
    Lang, Xiao
    Wu, Da
    Mao, Wengang
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 238
  • [27] Physics-Informed Machine Learning Improves Detection of Head Impacts
    Raymond, Samuel J.
    Cecchi, Nicholas J.
    Alizadeh, Hossein Vahid
    Callan, Ashlyn A.
    Rice, Eli
    Liu, Yuzhe
    Zhou, Zhou
    Zeineh, Michael
    Camarillo, David B.
    ANNALS OF BIOMEDICAL ENGINEERING, 2022, 50 (11) : 1534 - 1545
  • [28] Physics-informed machine learning model for bias temperature instability
    Lee, Jonghwan
    AIP ADVANCES, 2021, 11 (02)
  • [29] Physics-Informed Machine Learning Improves Detection of Head Impacts
    Samuel J. Raymond
    Nicholas J. Cecchi
    Hossein Vahid Alizadeh
    Ashlyn A. Callan
    Eli Rice
    Yuzhe Liu
    Zhou Zhou
    Michael Zeineh
    David B. Camarillo
    Annals of Biomedical Engineering, 2022, 50 : 1534 - 1545
  • [30] Special Issue: Physics-Informed Machine Learning for Advanced Manufacturing
    Guo, Yuebin
    JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 2024, 146 (08):