Machine learning-aided analysis for complex local structure of liquid crystal polymers

被引:0
|
作者
Hideo Doi
Kazuaki Z. Takahashi
Kenji Tagashira
Jun-ichi Fukuda
Takeshi Aoyagi
机构
[1] National Institute of Advanced Industrial Science and Technology (AIST),Research Center for Computational Design of Advanced Functional Materials
[2] Research Association of High-Throughput Design and Development for Advanced Functional Materials,Department of Physics, Faculty of Science
[3] Kyushu University,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Elucidation of mesoscopic structures of molecular systems is of considerable scientific and technological interest for the development and optimization of advanced materials. Molecular dynamics simulations are a promising means of revealing macroscopic physical properties of materials from a microscopic viewpoint, but analysis of the resulting complex mesoscopic structures from microscopic information is a non-trivial and challenging task. In this study, a Machine Learning-aided Local Structure Analyzer (ML-LSA) is developed to classify the complex local mesoscopic structures of molecules that have not only simple atomistic group units but also rigid anisotropic functional groups such as mesogens. The proposed ML-LSA is applied to classifying the local structures of liquid crystal polymer (LCP) systems, which are of considerable scientific and technological interest because of their potential for sensors and soft actuators. A machine learning (ML) model is constructed from small, and thus computationally less costly, monodomain LCP trajectories. The ML model can distinguish nematic- and smectic-like monodomain structures with high accuracy. The ML-LSA is applied to large, complex quenched LCP structures, and the complex local structures are successfully classified as either nematic- or smectic-like. Furthermore, the results of the ML-LSA suggest the best order parameter for distinguishing the two mesogenic structures. Our ML model enables automatic and systematic analysis of the mesogenic structures without prior knowledge, and thus can overcome the difficulty of manually determining the specific order parameter required for the classification of complex structures.
引用
收藏
相关论文
共 50 条
  • [11] Machine learning-aided engineering of hydrolases for PET depolymerization
    Hongyuan Lu
    Daniel J. Diaz
    Natalie J. Czarnecki
    Congzhi Zhu
    Wantae Kim
    Raghav Shroff
    Daniel J. Acosta
    Bradley R. Alexander
    Hannah O. Cole
    Yan Zhang
    Nathaniel A. Lynd
    Andrew D. Ellington
    Hal S. Alper
    Nature, 2022, 604 : 662 - 667
  • [12] Machine Learning-Aided Sparse Direction of Arrival Estimation
    Raiguru, Priyadarshini
    Kumar Rout, Susanta
    Sahani, Mrutyunjaya
    Mishra, Rabindra Kishore
    IEEE SENSORS JOURNAL, 2024, 24 (22) : 38125 - 38134
  • [13] Analysis of Weather and Time Features in Machine Learning-aided ERCOT Load Forecasting
    Yang, Jonathan
    Tuo, Mingjian
    Lu, Jin
    Li, Xingpeng
    2024 IEEE TEXAS POWER AND ENERGY CONFERENCE, TPEC, 2024, : 644 - 649
  • [14] Design of a machine learning-aided screening framework for antibiofilm peptides
    Puchakayala, Hema Chandra
    Bhatnagar, Pranshul
    Nambiar, Pranav
    Dutta, Arnab
    Mitra, Debirupa
    DIGITAL CHEMICAL ENGINEERING, 2023, 8
  • [15] Machine Learning-Aided Optical Performance Monitoring Techniques: A Review
    Tizikara, Dativa K.
    Serugunda, Jonathan
    Katumba, Andrew
    FRONTIERS IN COMMUNICATIONS AND NETWORKS, 2022, 2
  • [16] Machine Learning-Aided Monte Carlo Simulation and Subset Simulation
    Sabri, Md Shayan
    Ahmad, Furquan
    Samui, Pijush
    TRANSPORTATION RESEARCH RECORD, 2024, 2678 (12) : 864 - 886
  • [17] Machine learning-aided scoring of synthesis difficulties for designer chromosomes
    Yan Zheng
    Kai Song
    Ze-Xiong Xie
    Ming-Zhe Han
    Fei Guo
    Ying-Jin Yuan
    Science China(Life Sciences) , 2023, (07) : 1615 - 1625
  • [18] Machine learning-aided PSDM for dams with stochastic ground motions
    Hariri-Ardebili, Mohammad Amin
    Chen, Siyu
    Mahdavi, Golsa
    ADVANCED ENGINEERING INFORMATICS, 2022, 52
  • [19] Machine learning-aided protein identification from multidimensional signatures
    Zhang, Yuewen
    Wright, Maya A.
    Saar, Kadi L.
    Challa, Pavankumar
    Morgunov, Alexey S.
    Peter, Quentin A. E.
    Devenish, Sean
    Dobson, Christopher M.
    Knowles, Tuomas P. J.
    LAB ON A CHIP, 2021, 21 (15) : 2922 - 2931
  • [20] Machine Learning-Aided Identification of Single Atom Alloy Catalysts
    Dasgupta, Aparajita
    Gao, Yingjie
    Broderick, Scott R.
    Pitman, E. Bruce
    Rajan, Krishna
    JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (26): : 14158 - 14166