Turing pattern amplitude equation for a model glycolytic reaction-diffusion system

被引:0
|
作者
A. K. Dutt
机构
[1] University of the West of England,Faculty of Computing, Engineering and Mathematical Sciences, Du Pont Building
来源
关键词
Turing patterns; Reaction-Diffusion systems; Amplitude equation; Glycolytic oscillations;
D O I
暂无
中图分类号
学科分类号
摘要
For a reaction-diffusion system of glycolytic oscillations containing analytical steady state solution in complicated algebraic form, Turing instability condition and the critical wavenumber at the Turing bifurcation point, have been derived by a linear stability analysis. In the framework of a weakly nonlinear theory, these relations have been subsequently used to derive an amplitude equation, which interprets the structural transitions and stability of various forms of Turing structures. Amplitude equation also conforms to the expectation that time-invariant amplitudes are independent of complexing reaction with the activator species.
引用
收藏
页码:841 / 855
页数:14
相关论文
共 50 条
  • [41] Pattern Formation in the Turing-Hopf Codimension-2 Phase Space in a Reaction-Diffusion System
    Yuan Xu-Jin
    Shao Xin
    Liao Hui-Min
    Ouyang Qi
    CHINESE PHYSICS LETTERS, 2009, 26 (02)
  • [42] Turing instabilities in reaction-diffusion systems with cross diffusion
    Fanelli, Duccio
    Cianci, Claudia
    Di Patti, Francesca
    EUROPEAN PHYSICAL JOURNAL B, 2013, 86 (04):
  • [43] Turing Instability in Reaction-Diffusion Systems with Nonlinear Diffusion
    Zemskov, E. P.
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2013, 117 (04) : 764 - 769
  • [44] Turing instability in reaction-diffusion systems with nonlinear diffusion
    E. P. Zemskov
    Journal of Experimental and Theoretical Physics, 2013, 117 : 764 - 769
  • [45] Parametric Pattern Selection in a Reaction-Diffusion Model
    Stich, Michael
    Ghoshal, Gourab
    Perez-Mercader, Juan
    PLOS ONE, 2013, 8 (10):
  • [46] Nonlinear analysis of a reaction-diffusion system: Amplitude equations
    Zemskov, E. P.
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2012, 115 (04) : 729 - 732
  • [47] Pattern dynamics of the reaction-diffusion immune system
    Zheng, Qianqian
    Shen, Jianwei
    Wang, Zhijie
    PLOS ONE, 2018, 13 (01):
  • [48] Pattern formation in a fractional reaction-diffusion system
    Gafiychuk, V. V.
    Datsko, B. Yo.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 365 (02) : 300 - 306
  • [49] Nonlinear analysis of a reaction-diffusion system: Amplitude equations
    E. P. Zemskov
    Journal of Experimental and Theoretical Physics, 2012, 115 : 729 - 732
  • [50] PATTERN FORMATION OF BRUSSELATOR IN THE REACTION-DIFFUSION SYSTEM
    Ji, Yansu
    Shen, Jianwei
    Mao, Xiaochen
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2023, 16 (3-4): : 434 - 459