Minimal Lagrangian submanifolds of Lorentzian complex space forms with constant sectional curvature

被引:0
|
作者
Marcus Kriele
Luc Vrancken
机构
[1] Technische Universität Berlin,
[2] Fachbereich Mathematik,undefined
[3] Sekr. MA 8-3,undefined
[4] Straße des 17. Juni 136,undefined
[5] D-10623 Berlin,undefined
[6] Germany,undefined
[7] Katholieke Universiteit Leuven,undefined
[8] Department Wiskunde,undefined
[9] Celestijnenlaan 200B,undefined
[10] B-3001 Leuven,undefined
[11] Belgium,undefined
来源
Archiv der Mathematik | 1999年 / 72卷
关键词
Sectional Curvature; Complex Space; Space Form; Lagrangian Submanifolds; Constant Sectional Curvature;
D O I
暂无
中图分类号
学科分类号
摘要
We study Lagrangian immersions \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $M^n_1$\end{document} into Lorentzian complex indefinite space forms \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\tilde M^n_1(4 \tilde c), \tilde c \ne 0$\end{document} and classify all such immersions which are minimal and have constant curvature \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $c \ne \tilde c$\end{document}.
引用
收藏
页码:223 / 232
页数:9
相关论文
共 50 条