共 50 条
Bounded Engel elements in residually finite groups
被引:0
|作者:
Raimundo Bastos
Danilo Silveira
机构:
[1] Universidade de Brasília,Departamento de Matemática
[2] Universidade Federal de Goiás,Departamento de Matemática
来源:
关键词:
Engel elements;
Residually finite groups;
Verbal subgroups;
Non-commutator words;
20F45;
20E26;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Let q be a prime. Let G be a residually finite group satisfying an identity. Suppose that for every x∈G\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$x \in G$$\end{document} there exists a q-power m=m(x)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$m=m(x)$$\end{document} such that the element xm\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$x^m$$\end{document} is a bounded Engel element. We prove that G is locally virtually nilpotent. Further, let d, n be positive integers and w a non-commutator word. Assume that G is a d-generator residually finite group in which all w-values are n-Engel. We show that the verbal subgroup w(G) has {d,n,w}\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\{d,n,w\}$$\end{document}-bounded nilpotency class.
引用
收藏
页码:237 / 244
页数:7
相关论文