Remarks on Gagliardo–Nirenberg type inequality with critical Sobolev space and BMO

被引:0
|
作者
Hideo Kozono
Hidemitsu Wadade
机构
[1] Tohoku University,Mathematical Institute
来源
Mathematische Zeitschrift | 2008年 / 259卷
关键词
46E35; 26D10;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the generalized Gagliardo–Nirenberg inequality in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}}^n$$\end{document} in the homogeneous Sobolev space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{H}^{s, r}({\mathbb{R}}^n)$$\end{document} with the critical differential order s = n/r, which describes the embedding such as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p({\mathbb{R}}^n) \cap \dot{H}^{n/r,r}({\mathbb{R}}^n) \subset L^q({\mathbb{R}}^n)$$\end{document} for all q with p ≦ q < ∞, where 1 < p < ∞ and 1 < r < ∞. We establish the optimal growth rate as q → ∞ of this embedding constant. In particular, we realize the limiting end-point r = ∞ as the space of BMO in such a way that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$||u||_{L^{q}({\mathbb{R}}^n)} \leqq C_n q||u||_{L^{p}({\mathbb{R}}^n)}^{\frac{p}{q}}||u||_{BMO}^{1-\frac{p}{q}}$$\end{document} with the constant Cn depending only on n. As an application, we make it clear that the well known John–Nirenberg inequality is a consequence of our estimate. Furthermore, it is clarified that the L∞-bound is established by means of the BMO-norm and the logarithm of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{H}^{s, r}$$\end{document} -norm with s > n/r, which may be regarded as a generalization of the Brezis–Gallouet–Wainger inequality.
引用
收藏
页码:935 / 950
页数:15
相关论文
共 50 条
  • [31] Sobolev, Hardy, Gagliardo-Nirenberg, and Caffarelli-Kohn-Nirenberg-type inequalities for some fractional derivatives
    Kassymov, Aidyn
    Ruzhansky, Michael
    Tokmagambetov, Niyaz
    Torebek, Berikbol T.
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2020, 15 (01)
  • [32] Anisotropic Gagliardo–Nirenberg inequality with fractional derivatives
    Amin Esfahani
    Zeitschrift für angewandte Mathematik und Physik, 2015, 66 : 3345 - 3356
  • [33] GAGLIARDO-NIRENBERG-SOBOLEV INEQUALITIES ON PLANAR GRAPHS
    Esteban, Maria J.
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2022, 21 (06) : 2101 - 2114
  • [34] On Gagliardo–Nirenberg Type Inequalities
    V. I. Kolyada
    F. J. Pérez Lázaro
    Journal of Fourier Analysis and Applications, 2014, 20 : 577 - 607
  • [35] The space of monogenic BMO-functions and a John-Nirenberg inequality
    Bernstein, S
    PROGRESS IN ANALYSIS, VOLS I AND II, 2003, : 307 - 315
  • [36] The LP Gagliardo-Nirenberg-Zhang inequality
    Huang, Qingzhong
    Li, Ai-Jun
    ADVANCES IN APPLIED MATHEMATICS, 2020, 113
  • [37] New Sharp Gagliardo-Nirenberg-Sobolev Inequalities and an Improved Borell-Brascamp-Lieb Inequality
    Bolley, Francois
    Cordero-Erausquin, Dario
    Fujita, Yasuhiro
    Gentil, Ivan
    Guillin, Arnaud
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2020, 2020 (10) : 3042 - 3083
  • [38] Gagliardo-Nirenberg-type inequalities using fractional Sobolev spaces and Besov spaces
    Dao, Nguyen Anh
    ADVANCED NONLINEAR STUDIES, 2023, 23 (01)
  • [39] Stability Results for Logarithmic Sobolev and Gagliardo-Nirenberg Inequalities
    Dolbeault, Jean
    Toscani, Giuseppe
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2016, 2016 (02) : 473 - 498
  • [40] Generalised Gagliardo–Nirenberg Inequalities Using Weak Lebesgue Spaces and BMO
    David S. McCormick
    James C. Robinson
    Jose L. Rodrigo
    Milan Journal of Mathematics, 2013, 81 : 265 - 289