A Galerkin FEM for Riesz space-fractional CNLS

被引:0
|
作者
Xiaogang Zhu
Yufeng Nie
Zhanbin Yuan
Jungang Wang
Zongze Yang
机构
[1] Shaoyang University,School of Science
[2] Northwestern Polytechnical University,Department of Applied Mathematics
关键词
Space-fractional CNLS; FEM; Convergent analysis; 35R11; 65M60; 65M12;
D O I
暂无
中图分类号
学科分类号
摘要
In quantum physics, fractional Schrödinger equation is of particular interest in the research of particles on stochastic fields modeled by the Lévy processes, which was derived by extending the Feynman path integral over the Brownian paths to a path integral over the trajectories of Lévy fights. In this work, a fully discrete finite element method (FEM) is developed for the Riesz space-fractional coupled nonlinear Schrödinger equations (CNLS), conjectured with a linearized Crank–Nicolson discretization. The error estimate and mass conservative property are discussed. It is showed that the proposed method is decoupled and convergent with optimal orders in L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{2}$\end{document}-sense. Numerical examples are performed to support our theoretical results.
引用
收藏
相关论文
共 50 条
  • [41] Energy-Preserving AVF Methods for Riesz Space-Fractional Nonlinear KGZ and KGS Equations
    Sun, Jianqiang
    Yang, Siqi
    Zhang, Lijuan
    FRACTAL AND FRACTIONAL, 2023, 7 (10)
  • [42] A numerically efficient and conservative model for a Riesz space-fractional Klein-Gordon-Zakharov system
    Martinez, Romeo
    Macias-Diaz, J. E.
    Hendy, A. S.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 83
  • [43] High-order algorithm for the two-dimension Riesz space-fractional diffusion equation
    Zhang, Yuxin
    Ding, Hengfei
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2017, 94 (10) : 2063 - 2073
  • [44] A pseudo energy-invariant method for relativistic wave equations with Riesz space-fractional derivatives
    Macias-Diaz, J. E.
    Hendy, A. S.
    De Staelen, R. H.
    COMPUTER PHYSICS COMMUNICATIONS, 2018, 224 : 98 - 107
  • [45] Space-Fractional Telegraph Equations
    Meas, Somavatey
    Kittipoom, Pisamai
    THAI JOURNAL OF MATHEMATICS, 2019, 17 : 153 - 162
  • [46] A space-fractional Stefan problem
    Ryszewska, Katarzyna
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 199 (199)
  • [47] Space-Time Petrov-Galerkin FEM for Fractional Diffusion Problems
    Duan, Beiping
    Jin, Bangti
    Lazarov, Raytcho
    Pasciak, Joseph
    Zhou, Zhi
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2018, 18 (01) : 1 - 20
  • [48] Backward difference formulae and spectral Galerkin methods for the Riesz space fractional diffusion equation
    Xu, Yang
    Zhang, Yanming
    Zhao, Jingjun
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2019, 166 : 494 - 507
  • [49] On Preconditioners Based on HSS for the Space Fractional CNLS Equations
    Ran, Yu-Hong
    Wang, Jun-Gang
    Wang, Dong-Ling
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2017, 7 (01) : 70 - 81
  • [50] A compact fourth-order in space energy-preserving method for Riesz space-fractional nonlinear wave equations
    Macias-Diaz, J. E.
    Hendy, A. S.
    De Staelen, R. H.
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 325 : 1 - 14