Understanding prediction intervals for firm specific inefficiency scores from parametric stochastic frontier models

被引:0
|
作者
Phill Wheat
William Greene
Andrew Smith
机构
[1] University of Leeds,Department of Economics, Stern School of Business
[2] University of New York,undefined
来源
关键词
Stochastic frontier; Prediction intervals; Efficiency; C12; L25; L51; L92;
D O I
暂无
中图分类号
学科分类号
摘要
This paper makes two important contributions to the literature on prediction intervals for firm specific inefficiency estimates in cross sectional SFA models. Firstly, the existing intervals in the literature do not correspond to the minimum width intervals and in this paper we discuss how to compute such intervals and how they either include or exclude zero as a lower bound depending on where the probability mass of the distribution of ui|εi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ u_{i} |\varepsilon_{i} $$\end{document} resides. This has useful implications for practitioners and policy makers, with greatest reductions in interval width for the most efficient firms. Secondly, we propose an ‘asymptotic’ approach to incorporating parameter uncertainty into prediction intervals for firm specific inefficiency (given that in practice model parameters have to be estimated) as an alternative to the ‘bagging’ procedure suggested in Simar and Wilson (Econom Rev 29(1):62–98, 2010). The approach is computationally much simpler than the bagging approach.
引用
收藏
页码:55 / 65
页数:10
相关论文
共 50 条
  • [11] Expected efficiency ranks from parametric stochastic frontier models
    Horrace, William C.
    Richards-Shubik, Seth
    Wright, Ian A.
    EMPIRICAL ECONOMICS, 2015, 48 (02) : 829 - 848
  • [12] Unknown latent structure and inefficiency in panel stochastic frontier models
    Kutlu, Levent
    Tran, Kien C.
    Tsionas, Mike G.
    JOURNAL OF PRODUCTIVITY ANALYSIS, 2020, 54 (01) : 75 - 86
  • [13] Estimation of inefficiency in stochastic frontier models: a Bayesian kernel approach
    Guohua Feng
    Chuan Wang
    Xibin Zhang
    Journal of Productivity Analysis, 2019, 51 : 1 - 19
  • [14] Unknown latent structure and inefficiency in panel stochastic frontier models
    Levent Kutlu
    Kien C. Tran
    Mike G. Tsionas
    Journal of Productivity Analysis, 2020, 54 : 75 - 86
  • [15] A command to fit spatial stochastic frontier models with inefficiency spillovers
    Du, Kerui
    Galli, Federica
    Wang, Luojia
    STATA JOURNAL, 2025, 25 (01): : 189 - 211
  • [16] An alternative method for predicting technical inefficiency in stochastic frontier models
    Tsukuda, Y
    Miyakoshi, T
    APPLIED ECONOMICS LETTERS, 2003, 10 (11) : 667 - 670
  • [17] Estimation of inefficiency in stochastic frontier models: a Bayesian kernel approach
    Feng, Guohua
    Wang, Chuan
    Zhang, Xibin
    JOURNAL OF PRODUCTIVITY ANALYSIS, 2019, 51 (01) : 1 - 19
  • [18] Further results on estimating inefficiency effects in stochastic frontier models
    Tsionas, Mike G.
    Mamatzakis, Emmanuel
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2019, 275 (03) : 1157 - 1164
  • [19] Corporate social responsibility & firm efficiency: evidence from endogenous cost inefficiency stochastic frontier analysis
    Tu Van Binh
    Mulatu, Abay
    Xu, Boying
    APPLIED ECONOMICS, 2022, 54 (55) : 6380 - 6392
  • [20] Stationary Points for Parametric Stochastic Frontier Models
    Horrace, William C.
    Wright, Ian A.
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2020, 38 (03) : 516 - 526