Prediction of welding responses using AI approach: adaptive neuro-fuzzy inference system and genetic programming

被引:0
|
作者
Suman Chatterjee
Siba Sankar Mahapatra
Luciano Lamberti
Catalin I. Pruncu
机构
[1] National Institute of Technology Rourkela,Department of Mechanical Engineering
[2] Politecnico Di Bari,Dipartimento Di MeccanicaMatematica E Management
[3] University of Strathclyde,Design, Manufacturing & Engineering Management
关键词
Laser welding; Nd; YAG laser; ANFIS; MGGP; Titanium alloy; Stainless steel;
D O I
暂无
中图分类号
学科分类号
摘要
Laser welding of thin sheets has widespread application in various fields such as battery manufacturing, automobiles, aviation, electronics circuits and medical sciences. Hence, it is very essential to develop a predictive model using artificial intelligence in order to achieve high-quality weldments in an economical manner. In the present study, two advanced artificial intelligence techniques, namely adaptive neuro-fuzzy inference system (ANFIS) and multi-gene genetic programming (MGGP), were implemented to predict the welding responses such as heat-affected zone, surface roughness and welding strength during joining of thin sheets using Nd:YAG laser. The study attempts to develop an appropriate predictive model for the welding process. In the proposed methodology, 70% of the experimental data constitutes the training set whereas remaining 30% data is used as testing set. The results of this study indicated that the root-mean-square error (RMSE) of tested data set ranges between 7 and 16% for MGGP model, while RMSE for testing data set lies 18–35% for ANFIS model. The study indicates that the MGGP predicts the welding responses in a superior manner in laser welding process and can be applied for accurate prediction of performance measures.
引用
收藏
相关论文
共 50 条
  • [31] Shear strength prediction of RC beams using adaptive neuro-fuzzy inference system
    Naderpour, H.
    Mirrashid, M.
    SCIENTIA IRANICA, 2020, 27 (02) : 657 - 670
  • [32] Application of Adaptive Neuro-fuzzy Inference System for road accident prediction
    Mehdi Hosseinpour
    Ahmad Shukri Yahaya
    Seyed Mohammadreza Ghadiri
    Joewono Prasetijo
    KSCE Journal of Civil Engineering, 2013, 17 : 1761 - 1772
  • [33] Application of Adaptive Neuro-Fuzzy Inference System in Flammability Parameter Prediction
    Mensah, Rhoda Afriyie
    Xiao, Jie
    Das, Oisik
    Jiang, Lin
    Xu, Qiang
    Alhassan, Mohammed Okoe
    POLYMERS, 2020, 12 (01)
  • [34] Noise cancellation by using Adaptive Neuro-Fuzzy Inference System
    Zhang, Bao-cheng
    Xu, Xie-xian
    Chuan Bo Li Xue/Journal of Ship Mechanics, 2000, 4 (04): : 62 - 67
  • [35] Application of Adaptive Neuro-Fuzzy Inference System for Diabetes Classification and Prediction
    Geman, Oana
    Chiuchisan, Iuliana
    Toderean , Roxana
    2017 IEEE INTERNATIONAL CONFERENCE ON E-HEALTH AND BIOENGINEERING CONFERENCE (EHB), 2017, : 639 - 642
  • [36] Geoacoustic inversion using adaptive neuro-fuzzy inference system
    Satyanarayana Yegireddi
    Arvind Kumar
    Computational Geosciences, 2008, 12 : 513 - 523
  • [37] Prediction of the Performance of a Solar Thermal Energy System Using Adaptive Neuro-Fuzzy Inference System
    Yaici, Wahiba
    Entchev, Evgueniy
    2014 INTERNATIONAL CONFERENCE ON RENEWABLE ENERGY RESEARCH AND APPLICATION (ICRERA), 2014, : 601 - 604
  • [38] PREDICTION OF BEARING FAULT SIZE BY USING MODEL OF ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM
    Kaplan, Kaplan
    Kuncan, Melih
    Ertunc, H. Metin
    2015 23RD SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2015, : 1925 - 1928
  • [39] Illuminant Estimation Using Adaptive Neuro-Fuzzy Inference System
    Luo, Yunhui
    Wang, Xingguang
    Wang, Qing
    Chen, Yehong
    APPLIED SCIENCES-BASEL, 2021, 11 (21):
  • [40] Geoacoustic inversion using adaptive neuro-fuzzy inference system
    Yegireddi, Satyanarayana
    Kumar, Arvind
    COMPUTATIONAL GEOSCIENCES, 2008, 12 (04) : 513 - 523