Prediction of welding responses using AI approach: adaptive neuro-fuzzy inference system and genetic programming

被引:0
|
作者
Suman Chatterjee
Siba Sankar Mahapatra
Luciano Lamberti
Catalin I. Pruncu
机构
[1] National Institute of Technology Rourkela,Department of Mechanical Engineering
[2] Politecnico Di Bari,Dipartimento Di MeccanicaMatematica E Management
[3] University of Strathclyde,Design, Manufacturing & Engineering Management
关键词
Laser welding; Nd; YAG laser; ANFIS; MGGP; Titanium alloy; Stainless steel;
D O I
暂无
中图分类号
学科分类号
摘要
Laser welding of thin sheets has widespread application in various fields such as battery manufacturing, automobiles, aviation, electronics circuits and medical sciences. Hence, it is very essential to develop a predictive model using artificial intelligence in order to achieve high-quality weldments in an economical manner. In the present study, two advanced artificial intelligence techniques, namely adaptive neuro-fuzzy inference system (ANFIS) and multi-gene genetic programming (MGGP), were implemented to predict the welding responses such as heat-affected zone, surface roughness and welding strength during joining of thin sheets using Nd:YAG laser. The study attempts to develop an appropriate predictive model for the welding process. In the proposed methodology, 70% of the experimental data constitutes the training set whereas remaining 30% data is used as testing set. The results of this study indicated that the root-mean-square error (RMSE) of tested data set ranges between 7 and 16% for MGGP model, while RMSE for testing data set lies 18–35% for ANFIS model. The study indicates that the MGGP predicts the welding responses in a superior manner in laser welding process and can be applied for accurate prediction of performance measures.
引用
收藏
相关论文
共 50 条
  • [1] Prediction of welding responses using AI approach: adaptive neuro-fuzzy inference system and genetic programming
    Chatterjee, Suman
    Mahapatra, Siba Sankar
    Lamberti, Luciano
    Pruncu, Catalin, I
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2022, 44 (02)
  • [2] Seizure Prediction Using Adaptive Neuro-Fuzzy Inference System
    Rabbi, Ahmed F.
    Azinfar, Leila
    Fazel-Rezai, Reza
    2013 35TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2013, : 2100 - 2103
  • [3] An Energy Prediction Method using Adaptive Neuro-Fuzzy Inference System and Genetic Algorithms
    Kampouropoulos, K.
    Cardenas, J. J.
    Giacometto, F.
    Romeral, L.
    2013 IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2013,
  • [4] Battery Temperature Prediction Using an Adaptive Neuro-Fuzzy Inference System
    Zhang, Hanwen
    Fotouhi, Abbas
    Auger, Daniel J.
    Lowe, Matt
    BATTERIES-BASEL, 2024, 10 (03):
  • [5] Protein structure prediction using an adaptive neuro-fuzzy inference system
    Wang, YX
    Wang, ZH
    Li, XM
    PROCEEDINGS OF THE 7TH JOINT CONFERENCE ON INFORMATION SCIENCES, 2003, : 1625 - 1628
  • [6] Bayesian inference using an adaptive neuro-fuzzy inference system
    Knaiber, Mohammed
    Alawieh, Leen
    FUZZY SETS AND SYSTEMS, 2023, 459 : 43 - 66
  • [7] A hybrid of adaptive neuro-fuzzy inference system and genetic algorithm
    Varnamkhasti, M. Jalali
    Hassan, Nasruddin
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2013, 25 (03) : 793 - 796
  • [8] Prediction of the level of air pollution using adaptive neuro-fuzzy inference system
    Suganya, S.
    Meyyappan, T.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (24) : 37131 - 37150
  • [9] Swelling Prediction in Compacted Soils Using Adaptive Neuro-Fuzzy Inference System
    Jokar, Mehdi Hashemi
    Mirassi, Sohrab
    Mahboubi, Meisam
    JORDAN JOURNAL OF CIVIL ENGINEERING, 2023, 17 (01) : 97 - 106
  • [10] Prediction of concrete elastic modulus using adaptive neuro-fuzzy inference system
    Aydin, Abdulkadir Cueneyt
    Tortum, Ahmet
    Yavuz, Murat
    CIVIL ENGINEERING AND ENVIRONMENTAL SYSTEMS, 2006, 23 (04) : 295 - 309