Rational homotopy of Leibniz algebras

被引:0
|
作者
Muriel Livernet
机构
[1] Institut de Recherche Mathématique Avancée,
[2] Université Louis Pasteur et CNRS,undefined
[3] 7 rue René-Descartes,undefined
[4] F-67084 Strasbourg Cedex,undefined
[5] France.¶e-mail: livernet@math.u-strasbg.fr,undefined
来源
manuscripta mathematica | 1998年 / 96卷
关键词
Mathematics Subject Classification (1991):55P62, 17A30, 18Gxx;
D O I
暂无
中图分类号
学科分类号
摘要
We construct a non-commutative rational homotopy theory by replacing the pair (Lie algebras, commutative algebras) by the pair (Leibniz algebras, Leibniz-dual algebras). Both pairs are Koszul dual in the sense of operads (Ginzburg–Kapranov). We prove the existence of minimal models and the Hurewicz theorem in this framework. We define Leibniz spheres and prove that their homotopy is periodic.
引用
收藏
页码:295 / 315
页数:20
相关论文
共 50 条
  • [31] HOMOTOPY OF ALGEBRAS
    CHEN, KT
    JOURNAL OF ALGEBRA, 1968, 10 (02) : 183 - &
  • [32] RATIONAL HOMOTOPY THEORY OF MAPPING SPACES VIA LIE THEORY FOR L∞-ALGEBRAS
    Berglund, Alexander
    HOMOLOGY HOMOTOPY AND APPLICATIONS, 2015, 17 (02) : 343 - 369
  • [33] Realization of Lie algebras of derivations and moduli spaces of some rational homotopy types
    Felix, Yves
    Fuentes, Mario
    Murillo, Aniceto
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2024, 24 (04):
  • [34] Leibniz algebras constructed by Witt algebras
    Camacho, L. M.
    Omirov, B. A.
    Kurbanbaev, T. K.
    LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (10): : 2048 - 2064
  • [35] Representations of Leibniz Algebras
    A. Fialowski
    É. Zs. Mihálka
    Algebras and Representation Theory, 2015, 18 : 477 - 490
  • [36] Subinvariance in Leibniz algebras
    Misra, Kailash C.
    Stitzinger, Ernie
    Yu, Xingjian
    JOURNAL OF ALGEBRA, 2021, 567 : 128 - 138
  • [37] Thin Leibniz algebras
    Omirov, B. A.
    MATHEMATICAL NOTES, 2006, 80 (1-2) : 244 - 253
  • [38] Thin Leibniz algebras
    B. A. Omirov
    Mathematical Notes, 2006, 80 : 244 - 253
  • [39] Leibniz algebras with derivations
    Apurba Das
    Journal of Homotopy and Related Structures, 2021, 16 : 245 - 274
  • [40] Representations of Leibniz Algebras
    Fialowski, A.
    Mihalka, E. Zs.
    ALGEBRAS AND REPRESENTATION THEORY, 2015, 18 (02) : 477 - 490