Rational homotopy of Leibniz algebras

被引:0
|
作者
Muriel Livernet
机构
[1] Institut de Recherche Mathématique Avancée,
[2] Université Louis Pasteur et CNRS,undefined
[3] 7 rue René-Descartes,undefined
[4] F-67084 Strasbourg Cedex,undefined
[5] France.¶e-mail: livernet@math.u-strasbg.fr,undefined
来源
manuscripta mathematica | 1998年 / 96卷
关键词
Mathematics Subject Classification (1991):55P62, 17A30, 18Gxx;
D O I
暂无
中图分类号
学科分类号
摘要
We construct a non-commutative rational homotopy theory by replacing the pair (Lie algebras, commutative algebras) by the pair (Leibniz algebras, Leibniz-dual algebras). Both pairs are Koszul dual in the sense of operads (Ginzburg–Kapranov). We prove the existence of minimal models and the Hurewicz theorem in this framework. We define Leibniz spheres and prove that their homotopy is periodic.
引用
收藏
页码:295 / 315
页数:20
相关论文
共 50 条
  • [1] Rational homotopy of Leibniz algebras
    Livernet, M
    MANUSCRIPTA MATHEMATICA, 1998, 96 (03) : 295 - 315
  • [2] Rational homotopy of Leibniz algebras
    Livernet, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (08): : 819 - 823
  • [3] ON THE INFINITY CATEGORY OF HOMOTOPY LEIBNIZ ALGEBRAS
    Khudaverdyan, David
    Poncin, Norbert
    Qiu, Jian
    THEORY AND APPLICATIONS OF CATEGORIES, 2014, 29 : 332 - 370
  • [4] Cyclicity in homotopy algebras and rational homotopy theory
    Kajiura, Hiroshige
    GEORGIAN MATHEMATICAL JOURNAL, 2018, 25 (04) : 545 - 570
  • [5] From Atiyah Classes to Homotopy Leibniz Algebras
    Chen, Zhuo
    Stienon, Mathieu
    Xu, Ping
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 341 (01) : 309 - 349
  • [6] From Atiyah Classes to Homotopy Leibniz Algebras
    Zhuo Chen
    Mathieu Stiénon
    Ping Xu
    Communications in Mathematical Physics, 2016, 341 : 309 - 349
  • [7] Banach algebras and rational homotopy theory
    Lupton, Gregory
    Phillips, N. Christopher
    Schochet, Claude L.
    Smith, Samuel B.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (01) : 267 - 295
  • [8] Rational homotopy groups and Koszul algebras
    Papadima, S
    Suciu, AI
    COMPTES RENDUS MATHEMATIQUE, 2002, 335 (01) : 53 - 58
  • [9] AF-algebras and rational homotopy theory
    Seth, Apurva
    Vaidyanathan, Prahlad
    NEW YORK JOURNAL OF MATHEMATICS, 2020, 26 : 931 - 949
  • [10] ALGEBRAS REALIZED BY N-RATIONAL HOMOTOPY TYPES
    LUPTON, G
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 113 (04) : 1179 - 1184