On the Bundle of Clifford Algebras Over the Space of Quadratic Forms

被引:0
|
作者
Arkadiusz Jadczyk
机构
[1] Université de Toulouse III and Ronin Institute,Laboratoire de Physique Théorique
来源
关键词
Tensor algebra; Clifford algebra; Exterior algebra; Chevalley’s isomorphism; Gauge tranformations; 15A63; 15A66; 15A69;
D O I
暂无
中图分类号
学科分类号
摘要
For each quadratic form Q∈Quad(V)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q\in \text{ Quad }(V)$$\end{document} on a vector space over a field K,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {K},$$\end{document} we can define the Clifford algebra Cl(V,Q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\textrm{Cl}\,}}(V,Q)$$\end{document} as the quotient T(V)/I(Q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\textrm{T}\,}}(V)/I(Q)$$\end{document} of the tensor algebra T(V)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\textrm{T}\,}}(V)$$\end{document} by the two-sided ideal generated by expressions of the form x⊗x-Q(x),x∈V.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\otimes x-Q(x),\, x\in V.$$\end{document} In the present paper we consider the whole family {Cl(V,Q):Q∈Quad(V)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{{{\,\textrm{Cl}\,}}(V,Q):\, Q\in \text{ Quad }(V)\}$$\end{document} in a geometric way as a Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_2$$\end{document}-graded vector bundle over the base manifold Quad(V).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{ Quad }(V).$$\end{document} Bilinear forms F∈Bil(V)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F\in \text{ Bil }(V)$$\end{document} act on this bundle providing natural bijective linear mappings λ¯F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bar{\lambda }_F$$\end{document} between different Clifford algebras Cl(V,Q).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\textrm{Cl}\,}}(V,Q).$$\end{document} Alternating (or antisymmetric) forms induce vertical automorphisms, which we propose to consider as ‘gauge transformations’. We develop here the formalism of Bourbaki, which generalizes the well known Chevalley’s isomorphism Cl(V,Q)→End(⋀(V))→⋀(V).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\textrm{Cl}\,}}(V,Q)\rightarrow {{\,\textrm{End}\,}}(\bigwedge (V))\rightarrow \bigwedge (V).$$\end{document} In particular we realize the Clifford algebra twisting gauge transformations induced by antisymmetric bilinear forms as exponentials of contractions with elements of ⋀2(V∗)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bigwedge ^2(V^*)$$\end{document} representing these forms. Throughout all this paper we intentionally avoid using the so far accepted term “Clifford algebra of a bilinear form” (known otherwise as “Quantum Clifford algebra”), which we consider as possibly misleading, as it does not represent any well defined mathematical object. Instead we show explicitly how any given Clifford algebra Cl(Q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\textrm{Cl}\,}}(Q)$$\end{document} can be naturally realized as acting via endomorphisms of any other Clifford algebra Cl(Q′)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\textrm{Cl}\,}}(Q')$$\end{document} if Q′=Q+QF,F∈Bil(V)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q'=Q+Q_F,\, F\in \text{ Bil }(V)$$\end{document} and QF(x)=F(x,x).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_F(x)=F(x,x).$$\end{document} Possible physical meaning of such transformations is also mentioned.
引用
收藏
相关论文
共 50 条
  • [31] BUNDLE EQUIVALENCE OF QUADRATIC-FORMS
    COHN, H
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (01): : A58 - A58
  • [32] Separable Cowreaths Over Clifford Algebras
    Claudia Menini
    Blas Torrecillas
    Advances in Applied Clifford Algebras, 2023, 33
  • [33] Separable Cowreaths Over Clifford Algebras
    Menini, Claudia
    Torrecillas, Blas
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2023, 33 (02)
  • [34] CLIFFORD GROUPS FOR QUADRATIC-FORMS OF WHATEVER RANK
    HELMSTETTER, J
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1977, 285 (04): : 175 - 177
  • [35] QUADRATIC-FORMS ASSOCIATED WITH PROJECTIVE-MODULES OVER QUATERNION ALGEBRAS
    KNUS, MA
    RAMAN, P
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1980, 318 : 20 - 31
  • [36] SIMPLE ALGEBRAS AND QUADRATIC-FORMS
    MERKUREV, AS
    MATHEMATICS OF THE USSR-IZVESTIYA, 1992, 38 (01): : 215 - 221
  • [37] DISCRIMINANT ALGEBRAS OF QUADRATIC-FORMS
    HAAG, U
    ARCHIV DER MATHEMATIK, 1991, 57 (06) : 546 - 554
  • [38] Tame algebras and Tits quadratic forms
    Bruestle, Thomas
    Antonio de la Pena, Jose
    Skowronski, Andrzej
    ADVANCES IN MATHEMATICS, 2011, 226 (01) : 887 - 951
  • [39] QUADRATIC-FORMS AND AZUMAYA ALGEBRAS
    KNUS, MA
    OJANGUREN, M
    SRIDHARAN, R
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1978, 303 : 231 - 248
  • [40] THE METRIC OF A SPACE AND QUADRATIC ALGEBRAS
    WENE, GP
    JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (05) : 1034 - 1038