On a integrable deformations of Heisenberg supermagnetic model

被引:0
|
作者
Zhaowen Yan
机构
[1] Inner Mongolia University,School of Mathematical Sciences
关键词
Heisenberg Supermagnet Model; Gauge Equivalence; Supersymmetry; 17B80; 37K10; 35Q55;
D O I
暂无
中图分类号
学科分类号
摘要
The Heisenberg supermagnet model which is the supersymmetric generalization of the Heisenberg ferro-magnet model is an important integrable system. We consider the deformations of Heisenberg supermagnet model under the two constraint 1. S2 = S for S ∊ USPL(2/1)/S(L(1/1) ×U (1)) and 2. S2 = 3S − 2I S ∊ USPL(2/1)/S(U(2) × U (1)). By means of the gauge transformation, we construct the gauge equivalent counterparts, i.e., the super generalized Hirota equation and Gramman odd nonlinear Schrödinger equation.
引用
收藏
页码:335 / 342
页数:7
相关论文
共 50 条
  • [21] Modified Heisenberg ferromagnet model and integrable equation
    Zhao, WZ
    Li, ML
    Qi, YH
    Wu, K
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2005, 44 (03) : 415 - 418
  • [22] Integrable deformations of the flat space sigma model
    Idiab, Khalil
    PHYSICA SCRIPTA, 2025, 100 (02)
  • [23] On the Higher-Order Inhomogeneous Heisenberg Supermagnetic Models
    Han, Rong
    Sun, Haichao
    Jiang, Nana
    Yan, Zhaowen
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2021, 28 (04) : 345 - 362
  • [24] Fifth-order generalized Heisenberg supermagnetic models
    Jiang, Nana
    Zhang, Meina
    Guo, Jiafeng
    Yan, Zhaowen
    CHAOS SOLITONS & FRACTALS, 2020, 133 (133)
  • [25] On the Higher-Order Inhomogeneous Heisenberg Supermagnetic Models
    Rong Han
    Haichao Sun
    Nana Jiang
    Zhaowen Yan
    Journal of Nonlinear Mathematical Physics, 2021, 28 : 345 - 362
  • [26] ON THE PARAFERMIONIC SCATTERING OF AN INTEGRABLE HEISENBERG-MODEL WITH IMPURITY
    MARTINS, MJ
    NUCLEAR PHYSICS B, 1994, 426 (03) : 661 - 671
  • [27] Integrable deformations of integrable symplectic maps
    Xia, Baoqiang
    Zhou, Ruguang
    PHYSICS LETTERS A, 2009, 373 (47) : 4360 - 4367
  • [28] Multidimensional integrable deformations of integrable PDEs
    Casati, M.
    Zhang, D.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2023, 56 (50)
  • [29] Integrable deformations of integrable Hamiltonian systems
    Maciejewski, Andrzej J.
    Przybylska, Maria
    PHYSICS LETTERS A, 2011, 376 (02) : 80 - 93
  • [30] Integrable asymmetric λ-deformations
    Sibylle Driezen
    Alexander Sevrin
    Daniel C. Thompson
    Journal of High Energy Physics, 2019