Meromorphic functions that share a polynomial with their difference operators

被引:0
|
作者
Bingmao Deng
Dan Liu
Yongyi Gu
Mingliang Fang
机构
[1] South China Agricultural University,Institute of Applied Mathematics
[2] Guangzhou University,School of Mathematics and Information Science
关键词
Uniqueness; Meromorphic functions; Difference operators; 30D35; 39B32;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove the following result: Let f be a nonconstant meromorphic function of finite order, p be a nonconstant polynomial, andc be a nonzero constant. If f, Δcf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta _{c}f$\end{document}, and Δcnf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta_{c}^{n}f$\end{document} (n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n\ge 2$\end{document}) share ∞ and p CM, then f≡Δcf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f\equiv \Delta_{c}f$\end{document}. Our result provides a difference analogue of the result of Chang and Fang in 2004 (Complex Var. Theory Appl. 49(12):871–895, 2004).
引用
收藏
相关论文
共 50 条