From the Von-Neumann Equation to the Quantum Boltzmann Equation in a Deterministic Framework

被引:0
|
作者
F. Castella
机构
[1] Université de Rennes 1,CNRS et IRMAR
来源
Journal of Statistical Physics | 2001年 / 104卷
关键词
density matrix; Liouville equation; Pauli Master Equation; time-dependent scattering theory; Fermi's Golden Rule; oscillatory integrals in large dimensions;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate the rigorous convergence of the Density Matrix Equation (or Quantum Liouville Equation) towards the Quantum Boltzmann Equation (or Pauli Master Equation). We start from the Density Matrix Equation posed on a cubic box of size L with periodic boundary conditions, describing the quantum motion of a particle in the box subject to an external potential V. The physics motivates the introduction of a damping term acting on the off-diagonal part of the density matrix, with a characteristic damping time α−1. Then, the convergence can be proved by letting successivelyL tend to infinity and α to zero. The proof relies heavily on a lemma which allows to control some oscillatory integrals posed in large dimensional spaces. The present paper improves a previous announcement [CD].
引用
收藏
页码:387 / 447
页数:60
相关论文
共 50 条
  • [21] On the Quantum Boltzmann Equation
    László Erdős
    Manfred Salmhofer
    Horng-Tzer Yau
    Journal of Statistical Physics, 2004, 116 : 367 - 380
  • [22] On the quantum Boltzmann equation
    Erdös, L
    Salmhofer, M
    Yau, HT
    JOURNAL OF STATISTICAL PHYSICS, 2004, 116 (1-4) : 367 - 380
  • [23] Fast Deterministic Methods for the Boltzmann Equation
    Sergej, Rjasanow
    NUMERICAL MODELING OF SPACE PLASMA FLOWS: ASTRONUM-2008, 2009, 406 : 199 - 204
  • [24] On the approximation of the von-Neumann equation in the semi-classical limit. Part I: Numerical algorithm
    Filbet, Francis
    Golse, Francois
    JOURNAL OF COMPUTATIONAL PHYSICS, 2025, 527
  • [25] COMPUTER FROM PASCAL TO VON-NEUMANN - GOLDSTINE,HH
    TROPP, HS
    TECHNOLOGY AND CULTURE, 1975, 16 (04) : 660 - 662
  • [26] Quantum Classical Transition for Mixed States: The Scaled Von Neumann Equation
    Mousavi, S. V.
    Miret-Artes, S.
    SYMMETRY-BASEL, 2023, 15 (06):
  • [27] Geodesic flows, von Neumann equation and quantum mechanics on noncommutative cylinder
    Guha, Partha
    MODERN PHYSICS LETTERS A, 2006, 21 (28) : 2151 - 2160
  • [28] The Boltzmann equation from quantum field theory
    Drewes, Marco
    Mendizabal, Sebastian
    Weniger, Christoph
    PHYSICS LETTERS B, 2013, 718 (03) : 1119 - 1124
  • [29] A new deterministic numerical method for the Boltzmann equation
    Rjasanow, S
    COMPUTATIONAL FLUID AND SOLID MECHANICS 2003, VOLS 1 AND 2, PROCEEDINGS, 2003, : 2113 - 2116
  • [30] ON DETERMINISTIC APPROXIMATION OF THE BOLTZMANN EQUATION IN A BOUNDED DOMAIN
    Filbet, Francis
    MULTISCALE MODELING & SIMULATION, 2012, 10 (03): : 792 - 817