A generalization of the Motzkin–Straus theorem to hypergraphs

被引:2
|
作者
Samuel Rota Bulò
Marcello Pelillo
机构
[1] Università Ca’ Foscari di Venezia,Dipartimento di Informatica
来源
Optimization Letters | 2009年 / 3卷
关键词
Hypergraphs; Maximum clique; Polynomial optimization;
D O I
暂无
中图分类号
学科分类号
摘要
In 1965, Motzkin and Straus established a remarkable connection between the global maxima of the Lagrangian of a graph G over the standard simplex and the clique number of G. In this paper, we provide a generalization of the Motzkin–Straus theorem to k-uniform hypergraphs (k-graphs). Specifically, given a k-graph G, we exhibit a family of (parameterized) homogeneous polynomials whose local (global) minimizers are shown to be in one-to-one correspondence with maximal (maximum) cliques of G.
引用
收藏
页码:287 / 295
页数:8
相关论文
共 50 条
  • [31] Analogues of the Prime Number Theorem and Mertens’ Theorem for Closed Orbits of the Motzkin Shift
    Fahad Alsharari
    Mohd Salmi Md Noorani
    Habibullah Akhadkulov
    Bulletin of the Malaysian Mathematical Sciences Society, 2017, 40 : 307 - 319
  • [33] Mantel's theorem for random hypergraphs
    Balogh, Jozsef
    Butterfield, Jane
    Hu, Ping
    Lenz, John
    RANDOM STRUCTURES & ALGORITHMS, 2016, 48 (04) : 641 - 654
  • [34] A 2-isomorphism theorem for hypergraphs
    Vertigan, D
    Whittle, G
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1997, 71 (02) : 215 - 230
  • [35] A theorem on incidence matrices and quasirandom hypergraphs
    Dellamonica, Domingos, Jr.
    Frankl, Peter
    Roedl, Vojtech
    COMBINATORICS AND GRAPHS, 2010, 531 : 201 - 207
  • [36] The colorful Helly theorem and general hypergraphs
    Barbosa, Rommel M.
    Coelho, Erika M. M.
    Dourado, Mitre C.
    Szwarcfiter, Jayme L.
    EUROPEAN JOURNAL OF COMBINATORICS, 2012, 33 (05) : 743 - 749
  • [37] A BROKEN-CIRCUITS-THEOREM FOR HYPERGRAPHS
    DOHMEN, K
    ARCHIV DER MATHEMATIK, 1995, 64 (02) : 159 - 162
  • [38] A Harary-Sachs theorem for hypergraphs
    Clark, Gregory J.
    Cooper, Joshua N.
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2021, 149 : 1 - 15
  • [39] A generalization of the remainder theorem and factor theorem
    Laudano, F.
    INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY, 2019, 50 (06) : 960 - 967
  • [40] A generalization of the Open Mapping Theorem and a possible generalization of the Baire Category Theorem
    Machowski, Antoni
    TOPOLOGY AND ITS APPLICATIONS, 2023, 335