Chiral Charged Fermions, One-Dimensional Quantum Field Theory and Vertex Algebras

被引:0
|
作者
Florin Constantinescu
Günter Scharf
机构
[1] Johann Wolfgang Goethe-Universität Frankfurt,Fachbereich Mathematik
[2] Universität Zürich,Institut für Theoretische Physik
来源
关键词
chiral charged fermions; vertex operators and algebras;
D O I
暂无
中图分类号
学科分类号
摘要
We give an explicit L2-representation of chiral charged fermions using the Hardy–Lebesgue octant decomposition. In the ‘pure’ case such a representation has already been used by M. Sato in holonomic field theory. We study both ‘pure’ and ‘mixed’ cases. In the compact case, we rigorously define unsmeared chiral charged fermion operators inside the unit circle. Using chiral fermions, we orient our findings towards a functional analytic study of vertex algebras as one-dimensional quantum field theory.
引用
收藏
页码:113 / 126
页数:13
相关论文
共 50 条
  • [21] ONE-DIMENSIONAL QUANTUM-THEORY OF POMERON
    ALESSANDRINI, V
    AMATI, D
    JENGO, R
    NUCLEAR PHYSICS B, 1976, 108 (03) : 425 - 446
  • [22] One-dimensional Quantum Gravity and the Schwarzian theory
    Dionysios Anninos
    Diego M. Hofman
    Stathis Vitouladitis
    Journal of High Energy Physics, 2022
  • [23] 'One-dimensional' theory of the quantum Hall system
    Bergholtz, EJ
    Karlhede, A
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2006,
  • [24] Theory of one-dimensional quantum gap solitons
    Cheng, Z
    Kurizki, G
    PHYSICAL REVIEW A, 1996, 54 (04): : 3576 - 3591
  • [25] One-dimensional Quantum Gravity and the Schwarzian theory
    Anninos, Dionysios
    Hofman, Diego M.
    Vitouladitis, Stathis
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (03)
  • [26] QUANTUM THEORY OF ELECTROMAGNETIC FIELD IN A VARIBLE-LENGTH ONE-DIMENSIONAL CAVITY
    MOORE, GT
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1969, 14 (04): : 579 - &
  • [28] A quantum particle in a one-dimensional fractal field
    Boletskaya T.K.
    Russian Physics Journal, 2002, 45 (1) : 19 - 22
  • [29] Number conserving theory for topologically protected degeneracy in one-dimensional fermions
    Sau, Jay D.
    Halperin, B. I.
    Flensberg, K.
    Das Sarma, S.
    PHYSICAL REVIEW B, 2011, 84 (14)
  • [30] One-dimensional fermions with delta-function repulsion in the Brueckner theory
    Buzatu, FD
    PHYSICAL REVIEW B, 1997, 55 (04): : 2114 - 2121