nitromethane;
vibrational spectrum;
density functional theory;
quantum-chemical calculations;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
The molecular geometry of nitromethane was optimized and its force field and vibrational spectrum were calculated by the BECKE3LYP method. The accuracy of optimization of the geometry of MeNO2 obtained by this method using the 6–311G(d,p) and 6–311++G(d,p) basis sets is not poorer than that obtained at the second-order Møller-Plesset level of perturbation theory (MP2). The vibrational frequencies of nitromethane and its d1, d2, and d3 isotopomers obtained by the BECKE3LYP method are in much better agreement with the experimental data than those calculated at the MP2 level using the same basis set. The average absolute error of calculations performed without the use of any scaling factors is ∼2% for frequencies; the maximum deviation is ∼4%.