Boundary Asymptotics for Orthogonal Rational Functions on the Unit Circle

被引:0
|
作者
Adhemar Bultheel
Patrick Van Gucht
机构
[1] K.U. Leuven,Departement of Computer Science
[2] K.U. Leuven,Departement of Computer Science
来源
Acta Applicandae Mathematica | 2000年 / 61卷
关键词
orthogonal rational functions; asymptotics;
D O I
暂无
中图分类号
学科分类号
摘要
Let w(θ) be a positive weight function on the unit circle of the complex plane. For a sequence of points { αk }k = 1∞ included in a compact subset of the unit disk, we consider the orthogonal rational functions φn that are obtained by orthogonalization of the sequence { 1, z / π1, z2 / π2, ... } where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ {\pi }_k \left( {\rm Z} \right) = \prod\nolimits_{j^{ = 1} }^k {\left( {1 - \overline {\alpha } j{\rm Z}} \right)} $$ \end{document}, with respect to the inner product \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\left\langle {f,g} \right\rangle = \frac{1}{{2{\pi }}}\int_{{ - \pi }}^{\pi } {f\left( {{e}^{i\theta } } \right)} \overline {g\left( {{e}^{i\theta } } \right)} w\left( {\theta } \right){d\theta }$$ \end{document} In this paper we discuss the behaviour of φn(t) for ∣ t ∣ = 1 and n → ∞ under certain conditions. The main condition on the weight is that it satisfies a Lipschitz–Dini condition and that it is bounded away from zero. This generalizes a theorem given by Szegő in the polynomial case, that is when all αk = 0.
引用
收藏
页码:333 / 349
页数:16
相关论文
共 50 条
  • [31] Schur functions and orthogonal polynomials on the unit circle
    Pinter, F
    Nevai, P
    APPROXIMATION THEORY AND FUNCTION SERIES, 1996, 5 : 293 - 306
  • [32] Semiorthogonal functions and orthogonal polynomials on the unit circle
    Alfaro, M
    Cantero, MJ
    Moral, L
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 99 (1-2) : 3 - 14
  • [33] Strong and weak convergence of rational functions orthogonal on the circle
    Li, X
    Pan, K
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1996, 53 : 289 - 301
  • [34] Interpolation by rational functions with nodes on the unit circle
    Bultheel, A
    González-Vera, P
    Hendriksen, E
    Njåstad, O
    ACTA APPLICANDAE MATHEMATICAE, 2000, 61 (1-3) : 101 - 118
  • [35] Orthogonal on the Circle Rational Functions with Fixed Poles II
    Abramyan, A. V.
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2008, 43 (02): : 67 - 78
  • [36] Orthogonal on the circle rational functions with fixed poles II
    A. V. Abramyan
    Journal of Contemporary Mathematical Analysis, 2008, 43 : 67 - 78
  • [37] Asymptotic behavior of orthogonal rational functions corresponding to measure with discrete part off the unit circle
    Pan, K
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1996, 26 (04) : 1529 - 1540
  • [38] MAXIMUM OF CERTAIN RATIONAL FUNCTIONS IN UNIT CIRCLE
    SHAPIRO, HS
    NEWMAN, DJ
    GIBSON, PM
    AMERICAN MATHEMATICAL MONTHLY, 1965, 72 (05): : 562 - &
  • [39] Interpolation by Rational Functions with Nodes on the Unit Circle
    Adhemar Bultheel
    Pablo González-Vera
    Erik Hendriksen
    Olav Njåstad
    Acta Applicandae Mathematica, 2000, 61 : 101 - 118
  • [40] An extension of the associated rational functions on the unit circle
    Deckers, Karl
    Jose Cantero, Maria
    Moral, Leandro
    Velazquez, Luis
    JOURNAL OF APPROXIMATION THEORY, 2011, 163 (04) : 524 - 546