Let w(θ) be a positive weight function on the unit circle of the complex plane. For a sequence of points { αk }k = 1∞ included in a compact subset of the unit disk, we consider the orthogonal rational functions φn that are obtained by orthogonalization of the sequence { 1, z / π1, z2 / π2, ... } where \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$ {\pi }_k \left( {\rm Z} \right) = \prod\nolimits_{j^{ = 1} }^k {\left( {1 - \overline {\alpha } j{\rm Z}} \right)} $$
\end{document}, with respect to the inner product \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\left\langle {f,g} \right\rangle = \frac{1}{{2{\pi }}}\int_{{ - \pi }}^{\pi } {f\left( {{e}^{i\theta } } \right)} \overline {g\left( {{e}^{i\theta } } \right)} w\left( {\theta } \right){d\theta }$$
\end{document} In this paper we discuss the behaviour of φn(t) for ∣ t ∣ = 1 and n → ∞ under certain conditions. The main condition on the weight is that it satisfies a Lipschitz–Dini condition and that it is bounded away from zero. This generalizes a theorem given by Szegő in the polynomial case, that is when all αk = 0.