Boundary Asymptotics for Orthogonal Rational Functions on the Unit Circle

被引:0
|
作者
Adhemar Bultheel
Patrick Van Gucht
机构
[1] K.U. Leuven,Departement of Computer Science
[2] K.U. Leuven,Departement of Computer Science
来源
关键词
orthogonal rational functions; asymptotics;
D O I
暂无
中图分类号
学科分类号
摘要
Let w(θ) be a positive weight function on the unit circle of the complex plane. For a sequence of points { αk }k = 1∞ included in a compact subset of the unit disk, we consider the orthogonal rational functions φn that are obtained by orthogonalization of the sequence { 1, z / π1, z2 / π2, ... } where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ {\pi }_k \left( {\rm Z} \right) = \prod\nolimits_{j^{ = 1} }^k {\left( {1 - \overline {\alpha } j{\rm Z}} \right)} $$ \end{document}, with respect to the inner product \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\left\langle {f,g} \right\rangle = \frac{1}{{2{\pi }}}\int_{{ - \pi }}^{\pi } {f\left( {{e}^{i\theta } } \right)} \overline {g\left( {{e}^{i\theta } } \right)} w\left( {\theta } \right){d\theta }$$ \end{document} In this paper we discuss the behaviour of φn(t) for ∣ t ∣ = 1 and n → ∞ under certain conditions. The main condition on the weight is that it satisfies a Lipschitz–Dini condition and that it is bounded away from zero. This generalizes a theorem given by Szegő in the polynomial case, that is when all αk = 0.
引用
收藏
页码:333 / 349
页数:16
相关论文
共 50 条