A fast single-image super-resolution method implemented with CUDA

被引:0
|
作者
Yuan Yuan
Xiaomin Yang
Wei Wu
Hu Li
Yiguang Liu
Kai Liu
机构
[1] Sichuan University,College of Electronics and Information Engineering
[2] Sichuan University,College of Computer Science
[3] Sichuan University,College of Electrical and Engineering Information
来源
Journal of Real-Time Image Processing | 2019年 / 16卷
关键词
Super-resolution; Self-similarity; GPU; CUDA;
D O I
暂无
中图分类号
学科分类号
摘要
Image super-resolution (SR) plays an important role in many areas as it promises to generate high-resolution (HR) images without upgrading image sensors. Many existing SR methods require a large external training set, which would consume a lot of memory. In addition, these methods are usually time-consuming when training model. Moreover, these methods need to retrain model once the magnification factor changes. To overcome these problems, we propose a method, which does not need an external training set by using self-similarity. Firstly, we rotate original low-resolution (LR) image with different angles to expand the training set. Second, multi-scale Difference of Gaussian filters are exploited to obtain multi-view feature maps. Multi-view feature maps could provide an accurate representation of images. Then, feature maps are divided into patches in parallel to build an internal training set. Finally, nonlocal means is applied to each LR patch from original LR image to infer HR patches. In order to accelerate the proposed method by exploiting the computation power of GPU, we implement the proposed method with compute unified device architecture (CUDA). Experimental results validate that the proposed method performs best among the compared methods in both terms of visual perception and objective quantitation. Moreover, the proposed method gets a remarkable speedup after implemented with CUDA.
引用
收藏
页码:81 / 97
页数:16
相关论文
共 50 条
  • [41] Anchored neighborhood deep network for single-image super-resolution
    Wuzhen Shi
    Shaohui Liu
    Feng Jiang
    Debin Zhao
    Zhihong Tian
    EURASIP Journal on Image and Video Processing, 2018
  • [42] Learning Hierarchical Decision Trees for Single-Image Super-Resolution
    Huang, Jun-Jie
    Siu, Wan-Chi
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2017, 27 (05) : 937 - 950
  • [43] Single-Image Super-Resolution by Subdictionary Coding and Kernel Regression
    Yang, Wenming
    Yuan, Tingrong
    Wang, Wei
    Zhou, Fei
    Liao, Qingmin
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2017, 47 (09): : 2478 - 2488
  • [44] Efficient learnable collaborative attention for single-image super-resolution
    Zhao, YiGang
    Zheng, Chaowei
    Su, JianNan
    Chen, GuangYong
    JOURNAL OF ELECTRONIC IMAGING, 2024, 33 (06)
  • [45] A Conspectus of Deep Learning Techniques for Single-Image Super-Resolution
    Pattern Recognition and Image Analysis, 2022, 32 : 11 - 32
  • [46] NLCUnet: Single-Image Super-Resolution Network with Hairline Details
    Feng, Jiancong
    Wang, Yuan-Gen
    Xing, Fengchuang
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 1277 - 1282
  • [47] Texture enhancement for improving single-image super-resolution performance
    Yoo, Seok Bong
    Choi, Kyuha
    Jeon, Young Woo
    Ra, Jong Beom
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2016, 46 : 29 - 39
  • [48] Anchored neighborhood deep network for single-image super-resolution
    Shi, Wuzhen
    Liu, Shaohui
    Jiang, Feng
    Zhao, Debin
    Tian, Zhihong
    EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING, 2018,
  • [49] Single-Image Super-Resolution Based on Rational Fractal Interpolation
    Zhang, Yunfeng
    Fan, Qinglan
    Bao, Fangxun
    Liu, Yifang
    Zhang, Caiming
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (08) : 3782 - 3797
  • [50] Adapting Single-Image Super-Resolution Models to Video Super-Resolution: A Plug-and-Play Approach
    Wang, Wenhao
    Liu, Zhenbing
    Lu, Haoxiang
    Lan, Rushi
    Huang, Yingxin
    SENSORS, 2023, 23 (11)