Dynamic analysis of a biocontrol of sea lice by age-structured model

被引:0
|
作者
Isam Al-Darabsah
Yuan Yuan
机构
[1] Memorial University of Newfoundland,Department of Mathematics and Statistics
[2] University of Waterloo,Department of Applied Mathematics
来源
Nonlinear Dynamics | 2019年 / 97卷
关键词
Stage structure; Predator–prey interaction; Persistence; Stability;
D O I
暂无
中图分类号
学科分类号
摘要
Due to the responsibility for many illnesses on farmed salmon and inflicting huge financial losses, sea lice treatment has become one of the highest priorities in aquaculture studies. From the viewpoint of dynamics, we consider three stages in sea louse life cycle and study the predator–prey interaction between cleaner fish and sea lice. Through mathematical analysis, we provide two important indexes: the adult reproduction number Rs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}_s$$\end{document} for sea lice and the net reproductive number of cleaner fish Rf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}_f$$\end{document}, which address the global dynamics relating to Rs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}_s$$\end{document} and Rf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}_f$$\end{document} theoretically, including the global/local stability of the equilibria, uniformly persistence and possible Hopf bifurcation. Numerical simulation is provided to show the oscillation behavior in the system.
引用
收藏
页码:1649 / 1666
页数:17
相关论文
共 50 条
  • [31] An Age-structured Model of Bird Migration
    Gourley, S. A.
    Liu, Rongsong
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2015, 10 (06) : 61 - 76
  • [32] An age-structured model with delay mortality
    Tchuenche, JM
    BIOSYSTEMS, 2005, 81 (03) : 255 - 260
  • [33] Stability in an age-structured metapopulation model
    de Castro, ML
    Silva, JAL
    Justo, DAR
    JOURNAL OF MATHEMATICAL BIOLOGY, 2006, 52 (02) : 183 - 208
  • [34] An age-structured SVEAIR epidemiological model
    Bitsouni, Vasiliki
    Gialelis, Nikolaos
    Tsilidis, Vasilis
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (16) : 12460 - 12486
  • [35] An age-structured model of epidermis growth
    Gandolfi, Alberto
    Iannelli, Mimmo
    Marinoschi, Gabriela
    JOURNAL OF MATHEMATICAL BIOLOGY, 2011, 62 (01) : 111 - 141
  • [36] An age-structured model of epidermis growth
    Alberto Gandolfi
    Mimmo Iannelli
    Gabriela Marinoschi
    Journal of Mathematical Biology, 2011, 62 : 111 - 141
  • [37] An age-structured model for pertussis transmission
    Hethcote, HW
    MATHEMATICAL BIOSCIENCES, 1997, 145 (02) : 89 - 136
  • [38] An Age-Structured Model for Childhood Obesity
    Gonzalez-Parra, Gilberto
    Jodar, Lucas
    Jose Santonja, Francisco
    Jacinto Villanueva, Rafael
    MATHEMATICAL POPULATION STUDIES, 2010, 17 (01) : 1 - 11
  • [39] An age-structured model for the AIDS epidemic
    Griffiths, J
    Lowrie, D
    Williams, J
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2000, 124 (01) : 1 - 14
  • [40] Qualitative analysis of integral dynamic model of age-structured population with intra-species competition
    Hritonenko, N
    PROCEEDINGS OF DYNAMIC SYSTEMS AND APPLICATIONS, VOL 4, 2004, : 483 - 487