Explicit Formulas for Special Values of the Bell Polynomials of the Second Kind and for the Euler Numbers and Polynomials

被引:0
|
作者
Feng Qi
Bai-Ni Guo
机构
[1] Henan Polytechnic University,Institute of Mathematics
[2] Inner Mongolia University for Nationalities,College of Mathematics
[3] Tianjin Polytechnic University,Department of Mathematics, College of Science
[4] Henan Polytechnic University,School of Mathematics and Informatics
来源
关键词
Explicit formula; special value; Bell polynomial of the second kind; Euler number; Euler polynomial; double sum; weighted Stirling number; property; Primary 11B68; Secondary 11B83; 12E10; 33B10;
D O I
暂无
中图分类号
学科分类号
摘要
In the paper, the authors establish by two approaches several explicit formulas for special values of the Bell polynomials of the second kind, derive explicit formulas for the Euler numbers and polynomials in terms of double sums and the weighted Stirling numbers, and find a property for special values of the Bell polynomials of the second kind.
引用
收藏
相关论文
共 50 条
  • [21] Explicit upper bounds for Touchard polynomials and Bell numbers
    A.-M. Acu
    J. A. Adell
    I. Raşa
    Acta Mathematica Hungarica, 2024, 172 : 255 - 263
  • [22] Two explicit formulas for degenerate Peters numbers and polynomials
    Li, Yue-Wu
    Dagli, Muhammet Cihat
    Qi, Feng
    DISCRETE MATHEMATICS LETTERS, 2022, 8 : 1 - 5
  • [23] Bell-Sheffer exponential polynomials of the second kind
    Natalini, Pierpaolo
    Ricci, Paolo Emilio
    GEORGIAN MATHEMATICAL JOURNAL, 2021, 28 (01) : 125 - 132
  • [25] AN EXPLICIT FORMULA FOR BERNOULLI POLYNOMIALS IN TERMS OF r-STIRLING NUMBERS OF THE SECOND KIND
    Guo, Bai-Ni
    Mezo, Istavan
    Qi, Feng
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2016, 46 (06) : 1919 - 1923
  • [26] AN EXPLICIT RELATIONSHIP BETWEEN THE GENERALIZED APOSTOL-BERNOULLI AND APOSTOL-EULER POLYNOMIALS ASSOCIATED WITH λ-STIRLING NUMBERS OF THE SECOND KIND
    Luo, Qiu-Ming
    HOUSTON JOURNAL OF MATHEMATICS, 2010, 36 (04): : 1159 - 1171
  • [27] Explicit, determinantal, recursive formulas and relations of the Peters polynomials and numbers
    Dagli, Muhammet Cihat
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (05) : 2582 - 2591
  • [28] Several explicit formulas for (degenerate) Narumi and Cauchy polynomials and numbers
    Qi, Feng
    Dagli, Muhammet Cihat
    Lim, Dongkyu
    OPEN MATHEMATICS, 2021, 19 (01): : 833 - 849
  • [29] On Fully Degenerate Daehee Numbers and Polynomials of the Second Kind
    Yun, Sang Jo
    Park, Jin-Woo
    JOURNAL OF MATHEMATICS, 2020, 2020
  • [30] ON THE lambda-GENOCCHI POLYNOMIALS AND NUMBERS OF SECOND KIND
    Kwon, J. H.
    Lee, H. Y.
    Ryoo, C. S.
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2014, 35 (01): : 25 - 34