One-to-one disjoint path covers in hypercubes with faulty edges

被引:0
|
作者
Fan Wang
Weisheng Zhao
机构
[1] Nanchang University,School of Sciences
[2] Jianghan University,Institute for Interdisciplinary Research
来源
The Journal of Supercomputing | 2019年 / 75卷
关键词
Hypercubes; Vertex disjoint paths; Path covers; One-to-one; Fault edges;
D O I
暂无
中图分类号
学科分类号
摘要
A one-to-one k-disjoint path cover {P1,P2,…,Pk}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{P_1,P_2,\ldots ,P_k\}$$\end{document} of a graph G is a collection of k internally vertex disjoint paths joining source with sink that cover all vertices of G. In this paper, we investigate the problem of one-to-one disjoint path cover in hypercubes with faulty edges and obtain the following results: Let u, v ∈ V(Qn) be such that p(u)≠p(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(u)\ne p(v)$$\end{document} and 1≤k≤n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le k\le n$$\end{document}. Then there exists a one-to-one k-disjoint path cover {P1,P2,…,Pk}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{P_1,P_2,\ldots ,P_k\}$$\end{document} joining vertices u and v in Qn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_n$$\end{document}. Moreover, when 1≤k≤n-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le k\le n-2$$\end{document}, the result still holds even if removing n-2-k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n-2-k$$\end{document} edges from Qn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_n$$\end{document}.
引用
收藏
页码:5583 / 5595
页数:12
相关论文
共 50 条
  • [41] Optimal one-to-many disjoint paths in folded hypercubes
    Lai, CN
    Chen, GH
    Duh, DR
    I-SPAN 2000: INTERNATIONAL SYMPOSIUM ON PARALLEL ARCHITECTURES ALGORITHMS AND NETWORKS, PROCEEDINGS, 2000, : 148 - 153
  • [42] One-to-one
    Anon
    Cargo Systems, 2001, 28 (05):
  • [43] One-to-one
    Wang, F.
    Cargo Systems, 2001, 28 (07):
  • [44] Matchings extend to Hamiltonian cycles in hypercubes with faulty edges
    Chen, Xie-Bin
    FRONTIERS OF MATHEMATICS IN CHINA, 2019, 14 (06) : 1117 - 1132
  • [45] One-to-one
    Anon
    Cargo Systems, 2001, 28 (04):
  • [46] Cycles embedding in balanced hypercubes with faulty edges and vertices
    Cheng, Dongqin
    DISCRETE APPLIED MATHEMATICS, 2018, 238 : 56 - 69
  • [47] ONE-TO-ONE
    de Arce, Rodrigo Perez
    ARQ, 2016, (93): : 80 - 83
  • [48] One-to-one
    Reinhold, M.
    Cargo Systems, 2001, 28 (09):
  • [49] ONE-TO-ONE
    LEVY, G
    PHI DELTA KAPPAN, 1981, 62 (06) : 422 - 423
  • [50] Matchings extend to Hamiltonian cycles in hypercubes with faulty edges
    Xie-Bin Chen
    Frontiers of Mathematics in China, 2019, 14 : 1117 - 1132