Weighted Moore–Penrose Inverses Associated with Weighted Projections on Indefinite Inner Product Spaces

被引:0
|
作者
Guanjie Yan
Yunfei Tan
Qingxiang Xu
机构
[1] Shanghai Normal University,Department of Mathematics
关键词
Hilbert ; -module; Weighted projection; Weighted Moore–Penrose inverse; Indefinite inner-product space; 46L08; 15A09; 47A05;
D O I
暂无
中图分类号
学科分类号
摘要
Let H be a Hilbert C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-module, and let HM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_M$$\end{document} be the indefinite inner space induced by a self-adjointable and invertible operator M on H. Given weighted projections P and Q on HM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_M$$\end{document}, let Sλ,k=(PQ)k-λ(QP)k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{\lambda ,k}=(PQ)^k-\lambda (QP)^k$$\end{document} for a pair (k,λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k, \lambda )$$\end{document}, where k is a natural number and λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} is a complex number. It is proved that PQ-QP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$PQ-QP$$\end{document} is weighted Moore–Penrose invertible if and only if Sλ,k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{\lambda ,k}$$\end{document} is weighted Moore–Penrose invertible for every pair (k,λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k, \lambda )$$\end{document}.
引用
收藏
页码:1121 / 1134
页数:13
相关论文
共 50 条
  • [31] Nonnegative Moore-Penrose Inverse of Gram Matrices in an Indefinite Inner Product Space
    Ramanathan, K.
    Sivakumar, K. C.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2009, 140 (01) : 189 - 196
  • [32] An algorithmic approach to orthogonal projections and Moore-Penrose inverses
    Boulmaarouf, Z
    Miranda, MF
    Labrousse, JP
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1997, 18 (1-2) : 55 - 63
  • [33] Representations for Moore-Penrose inverses in Hilbert spaces
    Wei, YM
    Ding, J
    APPLIED MATHEMATICS LETTERS, 2001, 14 (05) : 599 - 604
  • [34] A Note on Weighted Moore-Penrose Inverses of 2x2 Block Matrices
    Yang, Hu
    Li, Hanyu
    Shao, Hua
    ADVANCES IN MATRIX THEORY AND ITS APPLICATIONS, VOL II: PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON MATRIX THEORY AND ITS APPLICATIONS, 2008, : 387 - 390
  • [35] Weighted Dual Covariance Moore-Penrose Inverses with respect to an Invertible Element in C*-Algebras
    Mahzoon, Hesam
    JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [36] Weighted generalized Moore-Penrose inverse
    Mosic, Dijana
    GEORGIAN MATHEMATICAL JOURNAL, 2023, 30 (06) : 919 - 932
  • [37] The generalized weighted Moore-Penrose inverse
    Sheng X.
    Chen G.
    Journal of Applied Mathematics and Computing, 2007, 25 (1-2) : 407 - 413
  • [38] Existence of Weighted Moore-Penrose Inverse
    Zhuang, Guifen
    Chen, Jianlong
    ADVANCES IN MATRIX THEORY AND ITS APPLICATIONS, VOL II: PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON MATRIX THEORY AND ITS APPLICATIONS, 2008, : 477 - 480
  • [39] Novel Steganographic Method Based on Hermitian Positive Definite Matrix and Weighted Moore-Penrose Inverses
    Pepic, Selver
    Saracevic, Muzafer
    Selim, Aybeyan
    Karabasevic, Darjan
    Mojsilovic, Marija
    Hasic, Amor
    Brzakovic, Pavle
    APPLIED SCIENCES-BASEL, 2024, 14 (22):
  • [40] The Moore-Penrose inverses of products and differences of projections in a C*-algebra
    Li, Yuan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (04) : 1169 - 1177