Weighted Moore–Penrose Inverses Associated with Weighted Projections on Indefinite Inner Product Spaces

被引:0
|
作者
Guanjie Yan
Yunfei Tan
Qingxiang Xu
机构
[1] Shanghai Normal University,Department of Mathematics
关键词
Hilbert ; -module; Weighted projection; Weighted Moore–Penrose inverse; Indefinite inner-product space; 46L08; 15A09; 47A05;
D O I
暂无
中图分类号
学科分类号
摘要
Let H be a Hilbert C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-module, and let HM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_M$$\end{document} be the indefinite inner space induced by a self-adjointable and invertible operator M on H. Given weighted projections P and Q on HM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_M$$\end{document}, let Sλ,k=(PQ)k-λ(QP)k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{\lambda ,k}=(PQ)^k-\lambda (QP)^k$$\end{document} for a pair (k,λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k, \lambda )$$\end{document}, where k is a natural number and λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} is a complex number. It is proved that PQ-QP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$PQ-QP$$\end{document} is weighted Moore–Penrose invertible if and only if Sλ,k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{\lambda ,k}$$\end{document} is weighted Moore–Penrose invertible for every pair (k,λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k, \lambda )$$\end{document}.
引用
收藏
页码:1121 / 1134
页数:13
相关论文
共 50 条
  • [1] Weighted Moore-Penrose Inverses Associated with Weighted Projections on Indefinite Inner Product Spaces
    Yan, Guanjie
    Tan, Yunfei
    Xu, Qingxiang
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2021, 47 (04) : 1121 - 1134
  • [2] Weighted Moore–Penrose inverses of products and differences of weighted projections on indefinite inner-product spaces
    Yunfei Tan
    Qingxiang Xu
    Guanjie Yan
    Advances in Operator Theory, 2020, 5 : 796 - 815
  • [3] Weighted Moore-Penrose inverses of products and differences of weighted projections on indefinite inner-product spaces
    Tan, Yunfei
    Xu, Qingxiang
    Yan, Guanjie
    ADVANCES IN OPERATOR THEORY, 2020, 5 (03) : 796 - 815
  • [4] WEIGHTED MOORE-PENROSE INVERSES OF ADJOINTABLE OPERATORS ON INDEFINITE INNER-PRODUCT SPACES
    Qin, Mengjie
    Xu, Qingxiang
    Zamani, Ali
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 57 (03) : 691 - 706
  • [5] On the Weighted Moore-Penrose Inverses
    Xu, Zhaoliang
    ADVANCES IN MATRIX THEORY AND ITS APPLICATIONS, VOL II: PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON MATRIX THEORY AND ITS APPLICATIONS, 2008, : 375 - 378
  • [6] Moore-Penrose Inverse in Indefinite Inner Product Spaces
    Radojevic, Ivana M.
    Djordjevic, Dragan S.
    FILOMAT, 2017, 31 (12) : 3847 - 3857
  • [7] Weighted Moore-Penrose Inverses and Weighted Core Inverses in Rings with Involution
    Zhu, Huihui
    Wang, Qing-Wen
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2021, 42 (04) : 613 - 624
  • [8] Weighted Moore-Penrose Inverses and Weighted Core Inverses in Rings with Involution
    Huihui Zhu
    Qing-Wen Wang
    Chinese Annals of Mathematics, Series B, 2021, 42 : 613 - 624
  • [9] Weighted Moore-Penrose Inverses and Weighted Core Inverses in Rings with Involution
    Huihui ZHU
    QingWen WANG
    Chinese Annals of Mathematics,Series B, 2021, (04) : 613 - 624
  • [10] On weighted Moore-Penrose inverses of incline matrices
    Qiao, Lishan
    Zhang, Limei
    Advances in Matrix Theory and Applications, 2006, : 349 - 352