On ideal convergence of double sequences in probabilistic normed spaces

被引:0
|
作者
Vijay Kumar
Bernardo Lafuerza-Guillén
机构
[1] Haryana College of Technology and Management,Department of Mathematics
[2] Universidad de Almería,Departamento de Estadística y Matemática Aplicada
来源
Acta Mathematica Sinica, English Series | 2012年 / 28卷
关键词
Ideal convergence; double sequence; statistical convergence; continuous ; -norm and probabilistic normed spaces; 54E70; 46S70;
D O I
暂无
中图分类号
学科分类号
摘要
The notion of ideal convergence is a generalization of statistical convergence which has been intensively investigated in last few years. For an admissible ideal ∮ ⊂ ℔ × ℔, the aim of the present paper is to introduce the concepts of ∮-convergence and ∮⋆-convergence for double sequences on probabilistic normed spaces (PN spaces for short). We give some relations related to these notions and find condition on the ideal ∮ for which both the notions coincide. We also define ∮ -Cauchy and ∮⋆-Cauchy double sequences on PN spaces and show that ∮ -convergent double sequences are ∮-Cauchy on these spaces. We establish example which shows that our method of convergence for double sequences on PN spaces is more general.
引用
收藏
页码:1689 / 1700
页数:11
相关论文
共 50 条
  • [41] ?m-Ideal Convergence of Generalized Difference Sequences in Neutrosophic Normed Spaces
    Kaur, Gursimran
    Meenakshi
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2022, 13 (03): : 1181 - 1196
  • [42] Regarding the Ideal Convergence of Triple Sequences in Random 2-Normed Spaces
    Bani-Ahmad, Feras
    Rashid, Mohammad H. M.
    SYMMETRY-BASEL, 2023, 15 (11):
  • [43] Strong Γ-ideal convergence in a probabilistic normed space
    Ozturk, Fulya
    Sencimen, Celaleddin
    Pehlivan, Serpil
    TOPOLOGY AND ITS APPLICATIONS, 2016, 201 : 171 - 180
  • [44] Multiple sequences in probabilistic normed spaces
    Tripathy B.C.
    Goswami R.
    Afrika Matematika, 2015, 26 (5-6) : 753 - 760
  • [45] ON STATISTICAL CONVERGENCE OF DOUBLE SEQUENCES IN RANDOM 2-NORMED SPACES
    Alotaibi, Abdullah M.
    JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2010, 1 (02): : 17 - 22
  • [46] ROUGH STATISTICAL CONVERGENCE OF DIFFERENCE DOUBLE SEQUENCES IN NORMED LINEAR SPACES
    Kisi, Omer
    Unal, Hatice Kubra
    HONAM MATHEMATICAL JOURNAL, 2021, 43 (01): : 47 - 58
  • [47] On ideal convergence of double sequences in 2–fuzzy n–normed linear space
    Vakeel AKhan
    Sameera AAAbdullah
    Kamal MASAlshlool
    Umme Tuba
    Nazneen Khan
    AppliedMathematics:AJournalofChineseUniversities, 2022, 37 (02) : 177 - 186
  • [48] On ideal convergence of double sequences in 2—fuzzy n—normed linear space
    Vakeel A. Khan
    Sameera A. A. Abdullah
    Kamal M. A. S. Alshlool
    Umme Tuba
    Nazneen Khan
    Applied Mathematics-A Journal of Chinese Universities, 2022, 37 : 177 - 186
  • [49] Ideal convergence in 2-normed spaces
    Sahiner, A.
    Guerdal, M.
    Saltan, S.
    Gunawan, H.
    TAIWANESE JOURNAL OF MATHEMATICS, 2007, 11 (05): : 1477 - 1484
  • [50] Riesz ideal convergence in neutrosophic normed spaces
    Khan, Vakeel A.
    Arshad, Mohammad
    Alam, Masood
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 44 (05) : 7775 - 7784