On multivariate orthogonal polynomials and elementary symmetric functions

被引:0
|
作者
Cleonice F. Bracciali
Miguel A. Piñar
机构
[1] UNESP - Universidade Estadual Paulista,Departamento de Matemática, IBILCE
[2] Facultad de Ciencias. Universidad de Granada,Instituto de Matemáticas IMAG & Departamento de Matemática Aplicada
来源
Numerical Algorithms | 2023年 / 92卷
关键词
Multivariate orthogonal polynomials; Symmetric polynomials; Elementary symmetric functions; Primary: 42C05; 33C50;
D O I
暂无
中图分类号
学科分类号
摘要
We study families of multivariate orthogonal polynomials with respect to the symmetric weight function in d variables Bγ(x)=∏i=1dω(xi)∏i<j|xi-xj|2γ+1,x∈(a,b)d,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} B_{\gamma }(\mathtt {x}) = \prod \limits _{i=1}^{d} \omega (x_{i}) \prod \limits _{i<j} |x_{i}-x_{j}|^{2\gamma +1}, \quad \mathtt {x}\in (a,b)^{d}, \end{aligned}$$\end{document}for γ>-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma >-1$$\end{document}, where ω(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega (t)$$\end{document} is an univariate weight function in t∈(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t \in (a,b)$$\end{document} and x=(x1,x2,…,xd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathtt {x} = (x_{1},x_{2}, \ldots , x_{d})$$\end{document} with xi∈(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_{i} \in (a,b)$$\end{document}. Applying the change of variables xi,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_{i},$$\end{document}i=1,2,…,d,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i=1,2,\ldots ,d,$$\end{document} into ur,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_{r},$$\end{document}r=1,2,…,d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=1,2,\ldots ,d$$\end{document}, where ur\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_{r}$$\end{document} is the r-th elementary symmetric function, we obtain the domain region in terms of the discriminant of the polynomials having xi,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_{i},$$\end{document}i=1,2,…,d,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i=1,2,\ldots ,d,$$\end{document} as its zeros and in terms of the corresponding Sturm sequence. Choosing the univariate weight function as the Hermite, Laguerre, and Jacobi weight functions, we obtain the representation in terms of the variables ur\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_{r}$$\end{document} for the partial differential operators such that the respective Hermite, Laguerre, and Jacobi generalized multivariate orthogonal polynomials are the eigenfunctions. Finally, we present explicitly the partial differential operators for Hermite, Laguerre, and Jacobi generalized polynomials, for d=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=2$$\end{document} and d=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=3$$\end{document} variables.
引用
收藏
页码:183 / 206
页数:23
相关论文
共 50 条
  • [21] On generating symmetric orthogonal polynomials
    Masjed-Jamei, Mohammad
    Koepf, Wolfram
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2013, 58 (10) : 1373 - 1385
  • [22] SYMMETRIC SYSTEMS OF ORTHOGONAL POLYNOMIALS
    MEIXNER, J
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1971, 44 (01) : 69 - &
  • [23] On the Elementary Symmetric Polynomials and the Zeros of Legendre Polynomials
    Alatawi, Maryam Salem
    JOURNAL OF MATHEMATICS, 2022, 2022
  • [24] Symmetric orthogonal Laurent polynomials
    Cochran, L
    Cooper, SC
    ORTHOGONAL FUNCTIONS, MOMENT THEORY, AND CONTINUED FRACTIONS: THEORY AND APPLICATIONS, 1998, 199 : 111 - 141
  • [25] Discretization of Generalized Chebyshev Polynomials of (Anti)symmetric Multivariate Sine Functions
    Brus, Adam
    Hrivnak, Jir
    Motlochova, Lenka
    XXVI INTERNATIONAL CONFERENCE ON INTEGRABLE SYSTEMS AND QUANTUM SYMMETRIES, 2019, 1416
  • [26] Cubature Formulas of Multivariate Polynomials Arising from Symmetric Orbit Functions
    Hrivnak, Jiri
    Motlochova, Lenka
    Patera, Jiri
    SYMMETRY-BASEL, 2016, 8 (07):
  • [27] Symmetric multivariate Chebyshev polynomials
    Verde-Star, Luis
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 187 (01) : 530 - 534
  • [28] MOMENTS OF ELEMENTARY SYMMETRIC FUNCTIONS OF ROOTS OF A MATRIX IN MULTIVARIATE-ANALYSIS
    MIJARES, TA
    ANNALS OF MATHEMATICAL STATISTICS, 1961, 32 : 1152 - &
  • [29] Multivariate orthogonal polynomials and integrable systems
    Ariznabarreta, Gerardo
    Manas, Manuel
    ADVANCES IN MATHEMATICS, 2016, 302 : 628 - 739
  • [30] A semiclassical perspective on multivariate orthogonal polynomials
    Alvarez de Moralesa, Maria
    Fernandez, Lidia
    Perez, Teresa E.
    Pinar, Miguel A.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 214 (02) : 447 - 456