On multivariate orthogonal polynomials and elementary symmetric functions

被引:0
|
作者
Cleonice F. Bracciali
Miguel A. Piñar
机构
[1] UNESP - Universidade Estadual Paulista,Departamento de Matemática, IBILCE
[2] Facultad de Ciencias. Universidad de Granada,Instituto de Matemáticas IMAG & Departamento de Matemática Aplicada
来源
Numerical Algorithms | 2023年 / 92卷
关键词
Multivariate orthogonal polynomials; Symmetric polynomials; Elementary symmetric functions; Primary: 42C05; 33C50;
D O I
暂无
中图分类号
学科分类号
摘要
We study families of multivariate orthogonal polynomials with respect to the symmetric weight function in d variables Bγ(x)=∏i=1dω(xi)∏i<j|xi-xj|2γ+1,x∈(a,b)d,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} B_{\gamma }(\mathtt {x}) = \prod \limits _{i=1}^{d} \omega (x_{i}) \prod \limits _{i<j} |x_{i}-x_{j}|^{2\gamma +1}, \quad \mathtt {x}\in (a,b)^{d}, \end{aligned}$$\end{document}for γ>-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma >-1$$\end{document}, where ω(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega (t)$$\end{document} is an univariate weight function in t∈(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t \in (a,b)$$\end{document} and x=(x1,x2,…,xd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathtt {x} = (x_{1},x_{2}, \ldots , x_{d})$$\end{document} with xi∈(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_{i} \in (a,b)$$\end{document}. Applying the change of variables xi,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_{i},$$\end{document}i=1,2,…,d,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i=1,2,\ldots ,d,$$\end{document} into ur,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_{r},$$\end{document}r=1,2,…,d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=1,2,\ldots ,d$$\end{document}, where ur\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_{r}$$\end{document} is the r-th elementary symmetric function, we obtain the domain region in terms of the discriminant of the polynomials having xi,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_{i},$$\end{document}i=1,2,…,d,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i=1,2,\ldots ,d,$$\end{document} as its zeros and in terms of the corresponding Sturm sequence. Choosing the univariate weight function as the Hermite, Laguerre, and Jacobi weight functions, we obtain the representation in terms of the variables ur\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_{r}$$\end{document} for the partial differential operators such that the respective Hermite, Laguerre, and Jacobi generalized multivariate orthogonal polynomials are the eigenfunctions. Finally, we present explicitly the partial differential operators for Hermite, Laguerre, and Jacobi generalized polynomials, for d=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=2$$\end{document} and d=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=3$$\end{document} variables.
引用
收藏
页码:183 / 206
页数:23
相关论文
共 50 条
  • [1] On multivariate orthogonal polynomials and elementary symmetric functions
    Bracciali, Cleonice F.
    Pinar, Miguel A.
    NUMERICAL ALGORITHMS, 2023, 92 (01) : 183 - 206
  • [2] Discrete Transforms and Orthogonal Polynomials of (Anti)symmetric Multivariate Sine Functions
    Brus, Adam
    Hrivnak, Jiri
    Motlochova, Lenka
    ENTROPY, 2018, 20 (12)
  • [3] DISCRETE TRANSFORMS AND ORTHOGONAL POLYNOMIALS OF (ANTI) SYMMETRIC MULTIVARIATE COSINE FUNCTIONS
    Hrivnak, Jiri
    Motlochova, Lenka
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (06) : 3021 - 3055
  • [4] Symmetric multivariate orthogonal refinable functions
    Han, B
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2004, 17 (03) : 277 - 292
  • [5] Christoffel Functions and Universality in the Bulk for Multivariate Orthogonal Polynomials
    Kroo, A.
    Lubinsky, D. S.
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2013, 65 (03): : 600 - 620
  • [6] LLT polynomials, elementary symmetric functions and melting lollipops
    Per Alexandersson
    Journal of Algebraic Combinatorics, 2021, 53 : 299 - 325
  • [7] Some inequalities for symmetric functions and an application to orthogonal polynomials
    Milovanovic, GV
    Cvetkovic, AS
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 311 (01) : 191 - 208
  • [8] Symmetric Functions of Binary Products of Fibonacci and Orthogonal Polynomials
    Boussayoud, Ali
    Kerada, Mohamed
    Araci, Serkan
    Acikgoz, Mehmet
    Esi, Ayhan
    FILOMAT, 2019, 33 (06) : 1495 - 1504
  • [9] LLT polynomials, elementary symmetric functions and melting lollipops
    Alexandersson, Per
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2021, 53 (02) : 299 - 325
  • [10] ELEMENTARY SYMMETRIC FUNCTIONS OF ROOTS OF MULTIVARIATE MATRIX - DISTRIBUTIONS
    MIJARES, TA
    ANNALS OF MATHEMATICAL STATISTICS, 1964, 35 (03): : 1186 - &