Boundary value formula for the Cauchy integral on elliptic curve

被引:0
|
作者
Mukhiddin I. Muminov
A. H. M. Murid
机构
[1] Universiti Teknologi Malaysia,Department of Mathematical Sciences, Faculty of Science
[2] Universiti Teknologi Malaysia,UTM Centre for Industrial and Applied Mathematics (UTM
关键词
Cauchy integral; Boundary value; Hilbert transform; Primary 30E25; 30C75; Secondary 45E05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider a Cauchy integral on elliptic curve Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} parameterized by equation η(t)=acost+ibsint,a,b>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta (t)=a \cos t+ib \sin t, a,b>0$$\end{document}. We drive a formula for the boundary values of the Cauchy integral when integral function is Hölder continuous on Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}. Hence we extend Hilbert transform to elliptic curves.
引用
收藏
页码:837 / 851
页数:14
相关论文
共 50 条
  • [1] Boundary value formula for the Cauchy integral on elliptic curve
    Muminov, Mukhiddin I.
    Murid, A. H. M.
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2018, 9 (04) : 837 - 851
  • [2] The Cauchy-Pompeiu integral formula in elliptic complex numbers
    Alayon-Solarz, D.
    Vanegas, C. J.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2012, 57 (09) : 1025 - 1033
  • [3] ON THE CAUCHY INTEGRAL FORMULA
    Apostolova, Lilia N.
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2012, 65 (01): : 5 - 10
  • [4] Cauchy Integral Formula
    Azram, M.
    Elfaki, F. A. M.
    5TH INTERNATIONAL CONFERENCE ON MECHATRONICS (ICOM'13), 2013, 53
  • [5] Cauchy formula on the length of a curve
    Ayari, S
    Dubuc, S
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1997, 40 (01): : 3 - 9
  • [6] Cauchy's integral theorem on Cauchy's integral formula
    Heffter, L
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1936, 175 (1/4): : 240 - 245
  • [7] A Cauchy integral formula in superspace
    De Bie, H.
    Sommen, F.
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2009, 41 : 709 - 722
  • [8] Noncommutative Cauchy Integral Formula
    Ghiloni, Riccardo
    Perotti, Alessandro
    Recupero, Vincenzo
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2017, 11 (02) : 289 - 306
  • [9] Noncommutative Cauchy Integral Formula
    Riccardo Ghiloni
    Alessandro Perotti
    Vincenzo Recupero
    Complex Analysis and Operator Theory, 2017, 11 : 289 - 306
  • [10] Inverse Problems for the Cauchy Integral Formula and the Cauchy Integral Derivative Formulas
    Bavrin, I. I.
    DOKLADY MATHEMATICS, 2008, 78 (02) : 679 - 680