Frustrated flexibility in metal-organic frameworks

被引:0
|
作者
Roman Pallach
Julian Keupp
Kai Terlinden
Louis Frentzel-Beyme
Marvin Kloß
Andrea Machalica
Julia Kotschy
Suresh K. Vasa
Philip A. Chater
Christian Sternemann
Michael T. Wharmby
Rasmus Linser
Rochus Schmid
Sebastian Henke
机构
[1] Technische Universität Dortmund,Anorganische Chemie, Fakultät für Chemie und Chemische Biologie
[2] Ruhr-Universität Bochum,Computational Materials Chemistry Group, Fakultät für Chemie und Biochemie
[3] Technische Universität Dortmund,Physikalische Chemie, Fakultät für Chemie und Chemische Biologie
[4] Diamond Light Source,Fakultät Physik/DELTA
[5] Harwell Campus,undefined
[6] Didcot,undefined
[7] Technische Universität Dortmund,undefined
[8] Deutsches Elektronen-Synchrotron (DESY),undefined
来源
Nature Communications | / 12卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Stimuli-responsive flexible metal-organic frameworks (MOFs) remain at the forefront of porous materials research due to their enormous potential for various technological applications. Here, we introduce the concept of frustrated flexibility in MOFs, which arises from an incompatibility of intra-framework dispersion forces with the geometrical constraints of the inorganic building units. Controlled by appropriate linker functionalization with dispersion energy donating alkoxy groups, this approach results in a series of MOFs exhibiting a new type of guest- and temperature-responsive structural flexibility characterized by reversible loss and recovery of crystalline order under full retention of framework connectivity and topology. The stimuli-dependent phase change of the frustrated MOFs involves non-correlated deformations of their inorganic building unit, as probed by a combination of global and local structure techniques together with computer simulations. Frustrated flexibility may be a common phenomenon in MOF structures, which are commonly regarded as rigid, and thus may be of crucial importance for the performance of these materials in various applications.
引用
收藏
相关论文
共 50 条
  • [41] Gyroidal Metal-Organic Frameworks
    Zhou, Xiao-Ping
    Li, Mian
    Liu, Jie
    Li, Dan
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (01) : 67 - 70
  • [42] Quantum Metal-Organic Frameworks
    Huang, Zhehao
    Geilhufe, Richard Matthias
    SMALL SCIENCE, 2024, 4 (10):
  • [43] Metal-Organic Frameworks in Motion
    Terzopoulou, Anastasia
    Nicholas, James D.
    Chen, Xiang-Zhong
    Nelson, Bradley J.
    Pane, Salvador
    Puigmarti-Luis, Josep
    CHEMICAL REVIEWS, 2020, 120 (20) : 11175 - 11193
  • [44] Metal-organic frameworks: the pressure is on
    Coudert, Francois-Xavier
    ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE CRYSTAL ENGINEERING AND MATERIALS, 2015, 71 : 585 - 586
  • [45] Introduction to Metal-Organic Frameworks
    Zhou, Hong-Cai
    Long, Jeffrey R.
    Yaghi, Omar M.
    CHEMICAL REVIEWS, 2012, 112 (02) : 673 - 674
  • [46] Flexible metal-organic frameworks
    Schneemann, A.
    Bon, V.
    Schwedler, I.
    Senkovska, I.
    Kaskel, S.
    Fischer, R. A.
    CHEMICAL SOCIETY REVIEWS, 2014, 43 (16) : 6062 - 6096
  • [47] Lanthanide metal-organic frameworks
    Borovkov, Victor
    FRONTIERS IN CHEMISTRY, 2015, 3
  • [48] Metal-Organic Frameworks and Their Applications
    Bharadwaj, Parimal Kanti
    Feng, Pingyun
    Kaskel, Stefan
    Xu, Qiang
    CHEMISTRY-AN ASIAN JOURNAL, 2019, 14 (20) : 3450 - 3451
  • [49] Fulleretic metal-organic frameworks
    Shustova, Natalia
    Williams, Derek
    Dolgopolova, Ekaterina
    Rice, Allison
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [50] Multicomponent Metal-Organic Frameworks
    Telfer, Shane
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2017, 73 : C51 - C51