共 50 条
Finite dimensional semigroup quadratic algebras with the minimal number of relations
被引:0
|作者:
Natalia Iyudu
Stanislav Shkarin
机构:
[1] Max-Planck-Institut für Mathematik,Department of Pure Mathematics
[2] Queens’s University Belfast,undefined
来源:
关键词:
Quadratic algebras;
Semigroup algebras;
Word combinatorics;
Golod–Shafarevich theorem;
Anick’s conjecture;
Hilbert series;
05A05;
17A45;
16S37;
16N40;
20M05;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
A quadratic semigroup algebra is an algebra over a field given by the generators x1, . . . , xn and a finite set of quadratic relations each of which either has the shape xjxk = 0 or the shape xjxk = xlxm. We prove that a quadratic semigroup algebra given by n generators and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${d\leq \frac{n^2+n}{4}}$$\end{document} relations is always infinite dimensional. This strengthens the Golod–Shafarevich estimate for the above class of algebras. Our main result however is that for every n, there is a finite dimensional quadratic semigroup algebra with n generators and δn relations, where δn is the first integer greater than \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\frac{n^2+n}{4}}$$\end{document} . That is, the above Golod–Shafarevich-type estimate for semigroup algebras is sharp.
引用
收藏
页码:239 / 252
页数:13
相关论文