Finite dimensional semigroup quadratic algebras with the minimal number of relations

被引:0
|
作者
Natalia Iyudu
Stanislav Shkarin
机构
[1] Max-Planck-Institut für Mathematik,Department of Pure Mathematics
[2] Queens’s University Belfast,undefined
来源
关键词
Quadratic algebras; Semigroup algebras; Word combinatorics; Golod–Shafarevich theorem; Anick’s conjecture; Hilbert series; 05A05; 17A45; 16S37; 16N40; 20M05;
D O I
暂无
中图分类号
学科分类号
摘要
A quadratic semigroup algebra is an algebra over a field given by the generators x1, . . . , xn and a finite set of quadratic relations each of which either has the shape xjxk = 0 or the shape xjxk = xlxm. We prove that a quadratic semigroup algebra given by n generators and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${d\leq \frac{n^2+n}{4}}$$\end{document} relations is always infinite dimensional. This strengthens the Golod–Shafarevich estimate for the above class of algebras. Our main result however is that for every n, there is a finite dimensional quadratic semigroup algebra with n generators and δn relations, where δn is the first integer greater than \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{n^2+n}{4}}$$\end{document} . That is, the above Golod–Shafarevich-type estimate for semigroup algebras is sharp.
引用
收藏
页码:239 / 252
页数:13
相关论文
共 50 条