Measurability of (M, N)-Wright convex functions

被引:0
|
作者
Michał Lewicki
机构
[1] Silesian University,Institute of Mathematics
来源
Aequationes mathematicae | 2009年 / 78卷
关键词
26A51; 39B62; Wright convexity; functional inequalities; regularity properties; measurable functions; continuous functions;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I \subset {\mathbb{R}}$$\end{document} be an open interval and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M, N : I^2 \longrightarrow I$$\end{document} be means on I. Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \varphi : I \longrightarrow {\mathbb{R}}$$\end{document} be solution of the functional equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi(M(x, y)) + \varphi(N(x, y)) = \varphi(x) + \varphi(y), \quad \quad x, y \in I$$\end{document}. We give sufficient conditions on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M, N$$\end{document} and the function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi$$\end{document} such that for every Lebesgue measurable solution \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f : I \longrightarrow \mathbb{R}$$\end{document} of the functional inequality \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(M(x, y)) + f(N(x, y)) \leq f(x) + f(y), \quad \quad x, y \in I$$\end{document}, the function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f \circ \varphi^{-1} : \varphi(I) \longrightarrow {\mathbb{R}}$$\end{document} is convex.
引用
收藏
相关论文
共 50 条
  • [31] A NOTE ON THE MEASURABILITY OF CONVEX-SETS
    LANG, R
    ARCHIV DER MATHEMATIK, 1986, 47 (01) : 90 - 92
  • [32] LAMBDA(N)-CONVEX FUNCTIONS
    MATHSEN, RM
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 17 (01): : 95 - &
  • [33] LAMBDA(N)-CONVEX FUNCTIONS
    KHOURY, RN
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1992, 163 (01) : 1 - 14
  • [34] PRODUCT MEASURABILITY OF FUNCTIONS
    NOLLE, G
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1971, 17 (02): : 163 - &
  • [35] MEASURABILITY OF SIMILAR FUNCTIONS
    Kupka, Ivan
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2017, 42 (02) : 803 - 808
  • [36] Some conditions implying the continuity of t-Wright convex functions
    Olbrys, A
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2006, 68 (3-4): : 401 - 418
  • [37] CHARACTERIZATIONS AND DECOMPOSITION OF STRONGLY WRIGHT-CONVEX FUNCTIONS OF HIGHER ORDER
    Gilanyi, Attila
    Merentes, Nelson
    Nikodem, Kazimierz
    Pales, Zsolt
    OPUSCULA MATHEMATICA, 2015, 35 (01) : 37 - 46
  • [38] Some new integral inequalities for (s, m)-convex and (α, m)-convex functions
    Bayraktar, B.
    Kudaev, V. Ch.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2019, 94 (02): : 15 - 25
  • [39] THE CONVEX ENVELOPE OF (N-1)-CONVEX FUNCTIONS
    Jach, Matthias
    Michaels, Dennis
    Weismantel, Robert
    SIAM JOURNAL ON OPTIMIZATION, 2008, 19 (03) : 1451 - 1466
  • [40] Operator m-convex functions
    Rooin, Jamal
    Alikhani, Akram
    Moslehian, Mohammad Sal
    GEORGIAN MATHEMATICAL JOURNAL, 2018, 25 (01) : 93 - 107